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PREFACE

This book is appropriate for a first course in clustering methods and 
data mining. Clustering and data mining methods are applicable in 
many fields of study, for example:

1. in the life sciences for developing complete taxonomies,

2. in the medical sciences for discovering more effective and economical 
means for making positive diagnosis in the treatment of patients,

3. in the behavioral and social sciences for discerning human judgments 
and behavior patterns,

4. in the earth sciences for identifying and classifying geographical regions,

5. in the engineering sciences for pattern recognition and artificial 
 intelligence applications, and

6. in decision and information sciences for analysis of markets and 
 documents.

The first five chapters consider early historical clustering methods. 
Chapters 1 and 2 are an introduction to general concepts in clustering 
methods, with an emphasis on proximity measures and data mining. Classi-
cal numerical clustering methods are presented in Chapters 3 and 4: hier-
archical and partitioned clustering. These methods are particularly defined 
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only on numeric data files. A clustering method implemented via multiple 
linear regression, judgmental analysis (JAN), is discussed in Chapter 5. JAN 
allows for numerical and categorical variables to be included in a clustering 
study.

All of the methods in Chapters 1 through 5 generate partitions on a 
study�s data file, referred to as crisp clustering results. Fuzzy clustering 
methods presented in Chapter 6, capture partitions plus modified versions 
for the partitions. The modified partitions allow for overlapping clusters.

Chapter 7 is an introduction to the data mining topics of classification 
and association rules, which enable qualitative rather than simply quantita-
tive data mining studies to be conducted.

Cluster analysis is essentially an art, but can be accomplished scientifi-
cally if the results of a clustering study can be validated. This is discussed 
in Chapter 8. Determination of the validity of individual clusters and the 
validation of a clustering, or collection of clusters, are discussed.

Chapter 9 surveys a variety of algorithms for clustering categorical data: 
ROCK, STIRR, CACTUS, and CLICK. These methods are dependent on 
underlying data structures and are applicable to relational databases.

Applications of clustering methods are presented in Chapters 10 
through 11. Chapter ten discusses classical statistical methods for identify-
ing outliers. Additionally, crisp and fuzzy clustering methods are applied 
to the outlier identification problem. Chapter 11 is an overview of model-
based clustering. This is often used in physical science research studies for 
data generation.

A summary of the issues and trends in the cluster analysis field is made 
in Chapter 12. Besides giving recommendations for further study, an intro-
duction to neural networks is presented. The appendices provide a variety 
of resources (software, URLs, algorithms, references) for the cluster analy-
sis plus URLs for test data files.

The text is applicable to either a course on clustering, data mining, and 
classification or as a companion text for a first class in applied statistics. 
Clustering and data mining are good motivators and applications of the top-
ics commonly included in an introductory applied statistics course.
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The scheduling references for each of the chapters, in an applied statis-
tics class, could be as follows:

 Chapters 1-4: after study of descriptive statistics.

 Chapter 9: immediately following Chapters 1-3.

 Chapter 6: after study of descriptive statistics.

 Chapter 10: after studying the Empirical Rule and Chebychev�s Law.

 Chapter 7: after studying probability.

 Chapter 8: after study of hypothesis testing.

 Chapter 5:  after study of correlation, and both linear and multiple linear 
regression.

 Chapter 11: after study of statistical inference.

No previous experience or background in clustering is assumed. El-
ementary statistics plus a brief exposure to data structures are the prereq-
uisites. Informal algorithms for clustering data and interpreting results are 
emphasized. In order to evaluate the results of clustering and to explore 
data, graphical methods and data structures are used for representing data. 
Throughout the text, examples and references are provided, in order to en-
able the material to be comprehensible for a diverse audience.





C H A P T E R1
INTRODUCTION TO 
CLUSTER ANALYSIS

1.1 WHAT IS A CLUSTER?

Many of the decisions being made today involve more than one person. 
An important question in the group decision process is: �How does the 
group arrive at its final decision?� There have been a number of different 
mathematical and statistical approaches used by researchers attempting to 
model the decision-making process including game theory, information the-
ory, and linear programming. Due to the large variety of decision- making 
situations, different types of decision processes, and the kinds of skills re-
quired, there is still a great deal of concern about the best way to make 
decisions. In many cases there is no objective approach. The individuals in 
the decision-making group each use their own set of criterion in reaching 
a decision. This approach might work in a situation where a consensus is 
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not needed. However, in the case where a single group decision is needed, 
there must be a �meeting of the minds.�

One approach used is the Delphi Technique. This technique was designed 
in the early 1950s by the Rand Corporation to predict future outcomes. It is 
a group information gathering process to develop consensus opinion from a 
panel of experts on a topic of interest. In the normal Delphi scenario, the pan-
el never meets face to face but interacts through questionnaires and feedback. 
This noncontact approach alleviates the worry over such issues as individual 
defensiveness or persuasiveness. However, opinions can be swayed due to a 
participant observing the responses of the rest of the panel. Another problem 
with the Delphi Technique is that the noncontact aspect is not feasible when, 
for example, the panel is the graduate admissions committee at a university.

Cluster analysis is another technique that has been used with success 
in the decision-making process. First, the investigator must determine the 
answer to �What is a cluster?� The premise in cluster analysis is: given 
a number of individuals, each of which is described by a set of numeri-
cal measures, devise a classification scheme for grouping the objects into a 
number of classes such that the objects within classes are similar in some 
respect and unlike those from other classes. These deduced classes are the 
clusters. The number of classes and the characteristics of each class must  
be determined from the data as discussed by Everett.1

The key difference between cluster analysis and the Delphi Technique 
is that cluster analysis is strictly an objective technique. Whereas individual 
decisions can be swayed in an attempt to reach consensus in the Delphi 
process, or a �happy medium� is reached which does not really portray the 
feelings of the group as a whole. This is not the case in cluster analysis. 
Clusters of individuals are reached using an objective mathematical func-
tion. One particular type of cluster analysis called Judgmental ANalysis 
(JAN) takes the process one step further. Not only does it classify the panel 
into similar groups based on a related regression equation, but it also allows 
for these equations to be combined into a single policy equation. The JAN 
technique has been in use since the 1960s. It has proven to be an effective 
first step for methods of capturing and clustering the policies of judges.

Attempts at classification, that is sorting similar things into categories, 
can be traced back to primitive humans. The ability to classify is a  necessary 
prerequisite for the development of language. Nouns, for example, are labels 

1 Everitt, B. S. (1980). Cluster analysis (2nd ed.). New York: Halsted Press.
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used to classify a particular group of objects. Saying that a particular four-
legged animal is a �dog� allows us to put that animal into a category separate 
from cats, sheep, and horses. In other words, it allows us to communicate.

The classification of people and animals is almost as old as language. The 
early Hindus categorized humans into six types based on sex, physical, and 
behavioral characteristics. The early Greeks and Romans used classification 
to get a better understanding of the world around them. Galen, A.D. 129-199,  
defined nine temperamental types that were assumed to be related to a per-
son�s susceptibility to various diseases and to individual differences in behav-
ior as discussed by Everitt.1 Development of a method to categorize animals 
into species was initiated by Aristotle. He started by dividing them into red 
blooded (vertebrates) and those not having red blood (invertebrates). He 
then subdivided the two groups again based on how their young were born. 
Theophrastus continued Aristotle�s work, providing the groundwork for bio-
logical research for centuries. Eventually, new taxonomic systems were de-
veloped by such people as Linnaeus, Lindley, and Darwin. Classification 
was not restricted to the biological sciences. In chemistry, Mendeleyev used 
classification to develop the periodic tables, discussion by Everitt.1

In the 1960s, two events led to an explosion of interest in cluster analy-
sis. The availability and spread of large, high-speed computers opened up 
new possibilities for researchers. Additionally, the publication of Principles 
of Numerical Taxonomy by Sokal and Sneath2 covered the following three 
important areas:

1. a number of different cluster analysis techniques

2. the use of computers in classification research

3. a radically empirical approach to biological taxonomy presented by 
Blashfield and Aldenderfer3

The need for cluster analysis arises in many fields of study. For example, 
Anderberg4 lists six areas where cluster analysis has been used successfully:

1. In the life sciences (biology, botany, zoology, etc.), the objects of  
analysis are life forms such as plants, animals, and insects. The  

2 Sokal, R. R., and Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. W. H. Freeman.
3  Blashfield and Aldenderfer, M. S. (1978). The literature on cluster analysis. Multivariate 

Behavioral Research, 13, 271-295.
4 Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press.
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operational  purpose of the analysis may range from developing com-
plete taxonomies to delimiting the subspecies of a distinct but varied 
species.

2. In the medical sciences (psychiatry, pathology, etc.), the objects of a 
cluster analysis may be diseases, patients, symptoms, and laboratory 
tests. The operational emphasis here is on discovering more effective 
and economical means for making positive diagnosis in the treatment  
of patients.

3. In the behavioral and social sciences (psychology, sociology, education, 
etc.), some of the wide variety of objects of analysis are training meth-
ods, behavior patterns, organizations, human judgments, families, and 
teaching techniques.

4. Applications of cluster analysis in the earth sciences (geology, geogra-
phy, etc.) have included the study of land and rock formations, soils, 
river systems, cities, and regions of the world.

5. Examples of entities that have been clustered in the engineering 
 sciences (pattern recognition, artificial intelligence, cybernetics, electri-
cal engineering, etc.) include handwritten characters, speech, finger-
prints, electrocardiograms, radar signals, and circuit designs.

6. In the area of information and decision sciences (information retrieval, 
political science, economics, marketing research, operational research, 
etc.), cluster analysis has been applied to the analysis of documents, 
markets, investments, and credit risks.

As can be seen, the areas in which cluster analysis has been used with 
success are large and varied. It is also interesting to note some of the other 
names for cluster analysis in these different fields. Some of the aliases men-
tioned by Anderberg3 are numerical taxonomy (biology, botany, ecology), 
typology (social sciences), learning without a leader (pattern recognition, 
cybernetics, electrical engineering), clumping (information retrieval, lin-
guistics), regionalization (geography), partition (graph theory, circuit de-
signers), and serration (anthropology). The reasons for clustering are as 
many and as varied as the fields and names. Everitt1 mentions seven pos-
sible uses of clustering techniques including data reduction, data explora-
tion, hypothesis generating, hypothesis testing, model fitting, and predic-
tion based on groups, and finding a true typology.
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1.2 CAPTURING THE CLUSTERS

Cluster analysis employs a measure of similarity or dissimilarity for as-
signing points in space to a cluster. In general terms, points exist in a space 
(which could be a plane, the surface of a sphere, three-dimensional space, 
etc.) that relate to the concept of distance that matches geometrical intu-
ition. Formally, the operational definition of this type of distance is: a prox-
imity measure in space M = {A, d} consists of a nonempty set A together 
with a distance function d: A × A � R2 which satisfies:

1. d(x, y) � 0; d(x, y) = 0 if and only if x = y

 That is, the distance between two distinct points is strictly positive.

2. d(x, y) = d(y, x) for all x, y in A

 The distance from x to y is equal to the distance from y to x.

3. (a) for a dissimilarity d(i,i) = 0, for all i

 The distance between a point and itself is zero, or

 points aren�t different from themselves.

 (b) for a similarity d(i,i) � max
k
 d(i, k) for all i

 The points are most similar to themselves.

So, what does this actually mean? First, there must exist a nonempty set 
A, basically a collection of one or more points. Given a distance function, d, 
which can be used to determine the distance between any two points of A, 
d, must also follow certain rules.

The first rule states that one cannot have a negative distance and the 
distance between two points can only be zero if the two points are, in fact, 
in exactly the same place. The second rule states that the distance between 
two points must be the same for whichever direction is measured, going 
from x to y covers the same distance as going from y to x. Finally, measure-
ment is either based upon similarity or dissimilarity between points.

Let M = {A, d} be the space being studied, let a be in A, and let � > 0. 
The �-neighborhood of a in M is defined to be:

N�(a) = {x in A | d(x, a) < �}

That is, the collection of points x in A within distance � of a.
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It is worth emphasizing that N�(a) does not include the boundary. It 
consists only of the interior of the �neighborhood.� If the boundary is in-
cluded, the neighborhood is called a closed neighborhood.

In R2 (the plane), N�(a) is the interior of a disc of radius � centered on a.

In R3 (three-dimensional space), N�(a) is the interior of a solid ball of 
radius � centered on a.

The previous two examples have all used the Euclidean metric, that is, 
our intuitive notion of distance:

d d i k x xij kjj

d

1

2

1

1 2

� � �� ���( , )
\

, in two-dimensional space and d is the 

number of features.

In R2, using the Minkowski measure,

d d i k x xij kj

r

j

d
r

2 1

1

� � �� ���( , )
\

, where d is the number of features, n 

is the number of patterns, and r = 2 is the dimension of the space, N�(a) is 
the interior of a square centered on a, with sides of length 2� parallel to the 
co-ordinate axes.

The “sup” distance,

d d i k x xi j d ij kj3 � � �� �( , ) max , where d is the number of patterns, 

generates diamond shaped �-neighborhoods.

Clusters are captured by attempting to find nonoverlapping 
�-neighborhoods using the given proximity. The goal is to group objects in 
a group (or related) to one another and different from (or unrelated to) the 
objects in other groups. The greater the similarity (or homogeneity) within 
a group, and the greater the difference between groups, the finer granular-
ity is present in the clustering.

Other commonly used proximity 
measures include:

City-block (Manhattan) distance. 
This distance is simply the average 
difference across dimensions. In most 
cases, this distance measure yields 
results similar to the simple Euclid-
ean distance. The city-block distance 

is: distance (x,y) = y xi ii
��

y

x

d1

d2

d3

FIGURE 1.1 Example �-Neighborhoods.
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 Chebychev distance. This distance measure may be appropriate in 
cases when defining two objects as �different� if they are different on 
any one of the dimensions. The Chebychev distance is computed as: 
distance (x,y) = Maximum |x

i
 � y

i
|

 Power distance. Sometimes the emphasis is to increase or decrease the 
progressive weight that is placed on dimensions for  different objects. 
This can be accomplished via the power distance. The power distance is 

computed as: distance (x,y) = x yi i

p r

i
�� ��

1/

, where r and p are user-

defined parameters. Parameter p controls the progressive weight that 
is placed on differences on individual dimensions, parameter r controls 
the progressive weight that is placed on larger differences between 
objects. If r and p are equal to two, then this distance is equal to the 
Euclidean distance.

 Percent disagreement. This measure is particularly useful if the data 
for the dimensions included in the analysis are categorical in nature. 
This distance is computed as: distance (x,y) = (Number of x

i
 � y

i
)/ i

Consider the following set of points in two-dimensional Euclidean 
space:

FIGURE 1.2 Points in Two-dimensional Euclidian 
Space.
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Three groups would be identified with Euclidian neighborhoods.

FIGURE 1.3 Three Groups Captured by Euclid-
ean Neighborhoods.

Several primary questions need to be investigated when capturing the 
clusters. These questions include:

1. �How many clusters are present?� Consider the following situation:

(a) (b) (c)

FIGURE 1.4 (a) Original Points, (b) Two Groups, and (c) One Group.

2. �Does the current �-neighborhood and proximity measure correctly 
identify the clusters?�

For instance, only one cluster can be captured for the following set 
of points in two-dimensional Euclidean space:
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(a) (b)

FIGURE 1.5 (a) Original Points and (b) One Cluster Interpreta-
tion.

In reality, the ac-
tual number of clusters 
should be two. In this 
case, the Euclidean 
neighborhoods are in-
capable of obtaining 
the correct number of 
clusters.

This example il-
lustrates that cluster 
analysis is sensitive 
to both the proximity measure selected and related �-neighborhood 
shapes. Different approaches may yield different results. Consequently, 
the distance metric should be chosen carefully. The results should also 
be compared to analyses based on different proximity measures to en-
able determination of the robustness of the results.

3. Do the captured clusters have realistic interpretations?

4. Do any of the clusters overlap? If so, to what degree?

1.3 NEED FOR VISUALIZING DATA

The discussion on proximity measures for capturing clusters demon-
strates that clustering software needs features that make clustering prac-
tical for a wide variety of applications. Such a package should at least 
provide highly optimized implementations of agglomerative, k-means, 

(a) (b)

FIGURE 1.6 (a) Original Points and (b) Actual Groups.
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and graph clustering, especially in the context of sparse high-dimensional 
data. Additionally, the package should help the user sort through the al-
gorithm options and resulting data files by providing an intuitive graphi-
cal interface. Clustering software should provide both standard statistics 
and unique visualizations for interpreting clustering results. Given the 
wide range of options and factors that are involved in clustering, the user 
should carefully analyze his results and compare them with results gen-
erated with different options. Visualizations enhance the analysis and 
 comparisons.

1.4 THE PROXIMITY MATRIX

According to Oxford Dictionary of Statistics,a square matrix in which 
the entry in cell (j, k) is some measure of the similarity (or distance) 
between the items to which row j and column k correspond. A simple 
example would be a standard mileage chart�the smaller the entry, the 
closer together are the two items. Proximity matrices form the data for 
multidimensional scaling. Asymmetric matrices can occur (for example, 
if the measurement is time taken, then the journey from top to bottom of 
a hill will be shorter than the journey from bottom to top).

Suppose we are given the following ordinal proximity matrix:

0 6 8 2 7

6 0 1 5 3

8 1 0 10 8

2 5 10 0 4

7 3 9 4 0

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

TABLE 1.1 An Ordinal Proximity Matrix.
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The objects x
i
, for the cell the value represents the Euclidean distance 

between the objects. Next we construct a proximity ratio matrix; a matrix 
where a proximity measure has been derived from the proximity matrix. 
The Euclidean proximity measure would generate the following proximity 
ratio matrix for the matrix in Table 1.2:

x2 x3 x4 x5

12.08 14.77 4.69 10.58

7.48 12.17 9.17 

16.37 13.64

7.87 

x1

x2

x3

x4

TABLE 1.2 A Proximity Ratio Matrix.

Using the proximity ratio matrix we can perform a hierarchical cluster-
ing �

0,
 �

2
, ... , �

n-1
 where the mth clustering contains n � m clusters. A level 

function, records the proximity for each clustering formed. For the start of 
this process, L(k) = k, because the levels are evenly spread apart.

L(m) = min{d(x
i
, x

j
) I �

m
 is defined}

where the mth clustering contains n � m clusters:

� � � �Cm m m m n m� � ��1 2, , , ( )@

The cophenetic proximity measure d
c
 on the n objects is the level at 

which objects x
i
 and x

j
 are first in the cluster.

d i j L kc ij( , ) ( )�

where

For single-link, use k m x x for some qij i j Cmq� � �� �min : , ��

For complete-link, use k m x x for some qij i j Cmq� � �� �max : , ��
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This process generates the following results for the complete-link  solution:

12.08 14.77 4.69 10.58

7.48 12.17 9.17

16.37 13.64

7.87

x2 x3 x4 x5

x1

x2

x3

x4

12.08 14.77 10.58

12.17 9.17

13.64

x2 x3,4 x5

x1

x2

x3,4

12.17 13.64

9.17

x2

x1,3,4

x2

x5

12.17

x2

x1,3,4,5

FIGURE 1.7 Complete-Link Clustering Process.

1.5 DENDROGRAMS

A special type of tree structure, called a dendrogram, provides a 
graphical presentation for the clustering. A dendrogram consists of layers 
of nodes, where each node represents a cluster. Lines connect nodes rep-
resenting clusters which are nested together. Horizontal slices of a dendro-
gram indicate a clustering. For the latter complete-link clustering, we have:

1 2 3 4 5

FIGURE 1.8 Dendrogram for a Complete-
Link Clustering.
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At the start L(1) = 16.37 for the clustering ( ), ( ), ( ), ( ), ( ) .x x x x x1 2 3 4 5{ }
On the first iteration, L(2) = 14.77 for the clustering 

( ), ( ), ( , ), ( ) .x x x x x1 2 3 4 5{ }
After completion of the second iteration, L(3) = 13.64 for the clustering 

( ), ( , , ), ( ) .x x x x x2 1 3 4 5{ }
Completion of the third iteration generates: L(4) = 12.17 for the clus-

tering ( ), ( , , , ) .x x x x x2 1 3 4 5{ }
The last iteration generates: L(5) = 12.17 for the clustering 

( , , , , ) .x x x x x1 2 3 4 5{ }
Clearly several obvious questions arise at this point in the cluster 

 analysis:

�� How many groups are present in the data?

�� What is the group membership interpretation?

�� Will different grouping algorithms have a common clustering result? 
Not necessarily!

�� CLUSTERING IS AN ART AS WELL AS A SCIENCE!

1.6 SUMMARY

Cluster analysis is the formal study of algorithms and methods for 
grouping, or classifying objects.

Questions to resolve include:

 What defines similarity between objects or between clusters?

 What defines a distance between two clusters?

 How can you capture clusters? What are the different methods for iden-
tifying these clusters?

 When is it �best� to partition or identify clusters?

 When is it �best� to stop joining clusters?

 What are the right data elements to utilize in clustering for a problem in 
a specific application domain where we may have hundreds of variables?

 What are the limitations of cluster analysis?
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Basically the steps completed in clustering include:

 Step One: Form similarities between all pairs of the objects based on a 
given attribute.

 Step Two: Groups are constructed where within-group similarities are 
larger than the between-group similarities.

Let d(i,k) be a proximity between the ith and kth patterns. Then:

 - For a dissimilarity d(i,i) = 0, for all i.

 - For a similarity, d(i,i) = max d(i,k), for all (i,k).

 - d(i,k) = d(k,i), for all (i,k).

 - d(i,k) � 0, for all (i,k).

The common proximity measures are:

�� Minkowski metric: d i k x xij kj
j

d

( , ) � �










�

�
1

�� Euclidean distance: d i k x xij kj
j

d

( , )

/

� �� �
�

�
�

�

�
�

�

�
2

1

1 2

�� Manhattan distance: d i k x xij kj
j

d

( , ) � �
�

�
1

�� Sup distance: d i k x x
j d

ij kj( , ) max� �
� �1

1.7 EXERCISES

1. Suppose you are given two decks of playing cards, one with a blue back-
ing and the other with a red backing. Discuss ways in which the 104 
cards without jokers or 108 cards with jokers can be clustered. Is it pos-
sible to form a clustering which is not a partition?

2. What is the distinction between the following terms: similarity measure, 
dissimilarity measure, metric, and distance measure?

3. Complete the computations for the single-link clustering presented in 
the chapter.
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 4. Complete a single-link cluster on the ordinal proximity matrix given in 
Table 1.2.

 5. Perform a complete-link cluster for each proximity measure given the 
following example considering the following data {(16,19), (20,23), 
(8,20), (1,23), (18,6), (5,28)} with associated labels {1, 2, 3, 4, 5, 6}, 
which are points within two-dimensional Euclidean space:

 (a) Minkowski metric (b) Manhattan distance

 (c) Sup distance (d) Percent disagreement

 6. The cluster analysis presented in this chapter is a bottom-to-top 
 (agglomerative) process. Perform a top-to-bottom (divisive) process. In 
other words, start with one cluster containing all the objects and finish 
with a clustering containing all the singleton clusters.

 7. For problems 3 through 5, discuss how to determine when the cluster-
ing stops.

 8. How could clustering methods be used for identifying outlier(s)? 
Note that outlier(s) by itself (themselves) will be a cluster. Think of an 
example of a tree diagram which will point out few outliers; and how 
the grouping pattern and the stem will be represented by a cluster of 
outliers.

 9. What is the relationship between the linkage distance measure and the 
number of clusters?

10. Why would the number of clusters not be a simple continuously 
increasing number? Is it possible that there may not be a one-to-one 
relationship between the linkage distance and the number of clusters?

11. How does variable selection play a role in cluster analysis; what meth-
od is best to use?

12. Why is linkage distance inversely related to the number of clusters in 
general?

13. What happens if a similarity measure is used instead of distance 
 measure?

14. What is meant by similarity or distance measures when we have quali-
tative data?
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15. What is the major problem with the nonhierarchical method? (Hint: 
start point of the seed or center of the cluster)

16. Why should you standardize the data when doing cluster analysis?

17. Discuss how to use the dendrogram. (Tree structure for identifying the 
distance �between clusters� and which observations belong to which 
cluster�a graphical representation issue.)

18. Various factors affect the stability of a clustering solution, including: 
selection, distance/similarity measure used, different significance 
levels, and type of method (divisive vs. agglomerative) among others. 
Do some background research and present a report on a method that 
converges to the right solution in the midst of the above mentioned 
parameters.

19. You are given the following contingency table for binary data:

pa + c b + d

c + d

a + b

sum

dc

ba

sum

0

1

01

Object i 

Object j 

TABLE 1.3 Contingency Table.

 (a) Define a symmetry measure based upon the contingency table.

 (b) Define an asymmetry measure based upon the contingency table.

20. Describe the type of variables in the following table and define a dis-
similarity measure for the binary variables.

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N

21. Define a similarity measure for nominal variables.

22. What is an ordinal variable? Discuss how a dissimilarity measure can 
be defined for an ordinal variable.
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23. What is a ratio-scaled variable? Discuss how nonlinear scale, such as an 
exponential scale, should be represented in a cluster analysis.

24. Databases consist of variables of mixed types. Discuss how to opera-
tionally define similarity/dissimilarity measures for a typical database.

25. What is a vector object? How can one operationally define a dissimilar-
ity measure for vector objects?



C H A P T E R2
OVERVIEW OF DATA 
MINING

2.1 WHAT IS DATA MINING?

A primary goal for many twenty-first century companies is to simul-
taneously maximize their rate of return and customer satisfaction. Supply 
chain management coupled with the associated entity relationship program 
enable firms to be competitive in the workforce. These firms are able to de-
liver a high-quality product that is highly useful to the customer in a timely 
fashion. Success is based upon understanding their customers, vendors, and 
supply chain.

Often this type of understanding is partially obtained by drilling-into-
the-database. For example, consider a database for a chain of grocery stores. 
The top ten customers could be found simply by using filters. Pivot table 
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processing would enable the identification of factors for purchasing habits 
broken down by geographical region and specific product lines. Graphical 
software would allow for the results to be visually displayed. These types 
of tasks, discussed in this paragraph, are in the realm of exploratory data 
analysis.

Today, data mining refers to the extraction of mathematical patterns 
from large databases. Methods from the fields of computer science, sta-
tistics, and machine learning comprise the data mining toolset. Rule sets, 
associations, sequenced associations, correlations, trends, and prediction 
models are some of the extracted mathematical patterns. Essentially data 
mining tools enable finding patterns in data and possibly inferring rules 
based upon the patterns.

SQL-based queries, use of human judgment, and online analytic pro-
cessing are the simplest data mining tools. Classification via decision trees, 
cluster analysis, and regression comprise the next level of data mining tools. 
Another level of data mining tools includes neural networks and fuzzy 
 systems.

A brief list of data mining methods includes: classification, clustering, 
associations, sequence discovery, regression, and forecasting. The objective 
of classification is to analyze the historical data stored in the database and 
generate a model for predicting future behavior. The objective of cluster-
ing is to partition a database into segments where members share similar 
features. Associations establish relationships that occur together in a given 
transaction. Sequence discovery�s objective is to determine associations that 
occur over time. Regression and forecasting are useful for prediction.

2.2 DATA MINING RELATIONSHIP TO KNOWLEDGE 
DISCOVERY IN DATABASES

To successfully mine for knowledge in large databases, a framework 
or process should be followed. Knowledge Discovery in Databases (KDD) 
is a machine learning process that performs rule induction on a related 
 procedure to establish knowledge from large databases. Fayyad, Piatesky-
Shapiro, and Smyth1 defined KDD as a process using data mining  methods 
to find useful information and patterns in data. On the other hand, data 

1  Fayyad, U., Piatesky-Shaapiro, G., and Smyth, P. (1996). The KDD process for extracting 
useful knowledge from volumes of data. Communications of the ACM, 39(11):27-34.
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mining uses algorithms to identify patterns in data derived through the 
KDD process. Organizational data is input to the KDD process in the en-
terprise data warehouse. Similar to structured programming, there exists a 
single source for data to be mined.

Fayyad, Piatesky-Shapiro, and Smyth1 developed the following nine 
step model, which is iterative with many loops between any two steps:

 Step 1: Fully develop and understand the application by learning 
relevant knowledge and related end-user goals.

 Step 2: Select a target data set based on the features and actual data 
points to serve as the discovery data set.

 Step 3: Perform data cleaning and preprocessing, which includes 
the tasks of removing outliers and noise, as well as dealing with missing 
values.

 Step 4: By application of data reduction and projection methods 
obtain an invariant representation of the data.

 Step 5: Select the data mining method that meets Step 1 
 requirements.

 Step 6: Select the data mining algorithm based upon appropriate 
models and parameters of the chosen methods.

 Step 7: Perform the data mining.

 Step 8: Interpret the mined patterns.

 Step 9: Incorporating the discovered knowledge into the perfor-
mance system and documenting and reporting it to the stake-
holders. Note that the interpreted patterns must be checked for and 
resolved with respect to potential conflicts for previously believed 
knowledge.

Cabena, Hadjinian, Stadler, Verhees, and Zanasi2 discuss an industrial 
model called CRISP-DM (Cross-Industry Standard Process for Data Min-
ing), which was established by four companies: Integral Solutions Ltd., 

2  Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., and Zanasi, A. (1998). Discovering Data 
Mining From Concepts to Implementation. Prentice Hall, Saddle River, New Jersey.
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NCR, DaimlerChrysler, and OHRA. This KDD process incorporates a de-
scription of business aspects as well as the technical description.

The CRISP-DM KDD model consists of the following steps:

 Step 1: Develop a business understanding:

1. Determine the business objectives.

2. Make an assessment of the problem.

3. Determine the data mining goals.

4. Generate a project plan.

 Step 2: Understand the data:

1. Collect the initial data.

2. Completely describe the data.

3. Perform preliminary exploration of the data.

4. Perform data quality verification.

 Step 3: Data preparation:

1. Select the project data.

2. Perform data cleaning.

3. Construct the new project attributes.

4. Transform the data if needed.

 Step 4: Modeling:

1. Selection of modeling techniques.

2. Development of test design.

3. Assessment of selected modeling techniques.

 Step 5: Evaluation:

1. Evaluate the results.

2. Perform a process review.

3. Determine the next step to be taken.
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Step 6: Deployment:

1. Develop a deployment plan.

2. Develop a monitoring and maintenance plan.

3. Generate the final report.

4. Review the process substeps.

2.3 THE DATA MINING PROCESS

In summary, data mining is the process of extracting valid, authentic, and 
relevant patterns from large databases. The basic steps in data mining are:

1. Problem definition.

2. Data preparation.

3. Data exploration.

4. Model selection and/or construction.

5. Model exploration and validation.

6. Model deploying and updating.

2.4 DATABASES AND DATA WAREHOUSING

The data miner needs an integrated company-wide view of high-quality 
data and information. Informational systems need to be separated from op-
erational systems in order to improve corporate data management. Data 
warehousing is one method organizations use to integrate data to gain 
greater data accessibility across the organization.

Definition: A data warehouse is a subject-oriented, integrated, time-
variant, non-updatable data set used in support of management decision-
making processes and business intelligence. This definition is authored by 
Hackathorn.3

Data warehousing is the process that organizations employ to create 
and maintain data warehouses plus enabling extraction of information  

3 Hackathorn, R. (1993). Enterprise Database Connectivity. New York: Wiley.
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 useful for informed decision making. Data warehouses consolidate data 
 located in disparate databases. By storing large quantities of data by 
 categories, data warehouses enable efficient retrieval, interpretation, and 
storage of data. Data warehousing is one means of maintaining a central 
 depository of all organizational data. This is the ideal software support 
needed for data mining.

Sometimes, in order to efficiently process certain applications, data 
mining is run on a subset of a data warehouse. In this case a data mart is 
employed. A data mart is a subset of the enterprise-wide database restricted 
to a single subject area. Data marts use a consistent data model and provide 
quality data.

2.5 EXPLORATORY DATA ANALYSIS AND VISUALIZATION

When performing a knowledge discovery task, visualization is a key 
 ingredient at each step. Summary tables and statistics are useful for in-
terpretation but are not comparable to displays of data points and their 
relationships. There is a standard collection of graph- and chart-drawing 
facilities common to all commercial discovery-oriented data mining tools. 
SAS and S statistical packages provide visualizations such as scatter-plots 
and multidimensional point cloud rotations.

Databases organized to support easy and efficient multidimensional 
analysis are referred to as multidimensional databases. When data mining 
a multidimensional database, data cubes provide for efficient retrieval of 
data. OLAP software for processing a cube feature page-by, pivot, sort, fil-
ter and drill-up, as well as, drill-down. These tools allow the end user to 
slice-and-dice a cube of data with mouse clicks.

Many OLAP vendors provide for three-dimensional visualization tools, 
which are applicable for data mining. Some of the new three-dimensional 
tools include dashboards and scorecards. Dashboards and scorecards pro-
vide visual displays of important information in a consolidated and orga-
nized manner on a single screen so that the information can be digested at a 
single glance and efficiently explored. Dashboards and scoreboards possess 
the following features:

�� Use of visual components.

�� Require minimal training.
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�� Data is derived from a variety of systems into a single summarized view.

�� Enable drill-down or drill-through processing.

�� Are based upon dynamic real-world view of timely data refreshes.

Additionally, some vendors support tools for visual analysis. Data min-
ing tools are accessible from the following sources:

�� Mathematical and statistical packages.

�� Web-based marketing packages.

�� Analytics added to database tools.

�� Standalone data mining tools.

WEKA is an open source set of machine learning algorithms for data 
mining tasks. Neural network capabilities are included in WEKA. WEKA is 
downloadable from cs.waikato.ac.nz/~ml/weka.

2.6 DATA MINING ALGORITHMS

Statistical, machine learning, and neural network based algorithms are 
employed in data mining to capture classes, clusters, associations, and se-
quential patterns. These algorithms include components to:

�� Post extracted, transformed, and transaction data needed to the data 
warehouse.

�� Manage data in a multidimensional database.

�� Provide multi-user data access, especially for business analysts and IT 
personnel.

�� Perform data analysis.

�� Provide graphical displays useful for interpretation.

The data mining field is still evolving. Database personnel were among 
the first individuals who gave a serious thought to the problem of data min-
ing, because they were the first to face the problem of extraction of hidden 
information in a database. Most of the tools and techniques used for data 
mining come from other related fields like pattern recognition, statistics, 
and complexity theory. Only recently have researchers from various fields 
been interacting to solve the mining issue.
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Many of the traditional data mining techniques have failed because of 
the sheer size of the data. New techniques will have to be developed to 
store this huge data set. Any algorithm that is proposed for mining data will 
have to account for out of core data structures. Existing algorithms have not 
addressed the data set size issue. Some of the newly proposed algorithms, 
like parallel algorithms, are now beginning to look at data mining on large 
databases.

Most data mining algorithms assume the data to be noise free. As a 
result, the most time-consuming part of solving problems becomes data 
preprocessing. Data formatting and experimental/result management are 
frequently just as time consuming and frustrating.

2.7 MODELING FOR DATA MINING

Nonlinear analysis is provided by artificial neural networks, while al-
gorithms like genetic algorithms offer optimization. Classification employs 
tree-structured algorithms. Rule induction involves the extraction of if-then 
rules from the data based upon statistical significance. Data visualization, 
which is extremely useful for data mining, provides visual interpretation of 
complex relationships in multidimensional data.

2.8 SUMMARY

Consider the following analogy. The patient, or the database, is examined 
for patterns that will extract information and rules applicable to the  patient�s 
cardiovascular system, or the enterprise-wide database and data warehouses. 
The skeletal system is the computer architecture and the tendons and mus-
cle are the operating system and netware. Data mining algorithms, software, 
and methods are the data mining physician�s black bag, or toolset. Through 
education and experience, the physician can generate useful information us-
ing his toolset. Like a medical doctor, beyond technical knowledge and know 
how, the data miner must know and understand his patient.

2.9 EXERCISES

1. Why is a standardized KDD necessary?

2. Compare data mining to the KDD process. Which term is broader?

3. Compare the two KDD processes discussed in this chapter.
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 4. Identify where mistakes can be made in data mining. For each 
 potential mistake, discuss how to avoid them.

 5. What factors have increased the popularity of data mining recently?

 6. Identify at least five applications of data mining.

 7. Identify some major characteristics of data mining.

 8. Identify some of the main categories of data mining technologies.

 9. Perform a topical search on the Six Sigma Method�s approach to data 
mining.

10. Perform a topical search and prepare a report on text mining.

11. What is the relationship between OLAP and data mining?

12. Go to http://www.teradastudentnetwork.com and find seminars on 
data mining.

 a. List and discuss applications of data mining.

 b.  Determine types of costs and payoffs that organizations can expect 
from data mining.

13. Discuss the major advantages of data warehousing to end users.

14. Distinguish between a data warehouse and a data mart.

15. How can data integration lead to higher levels of data quality?

16. How is a data warehouse different from a database?

17. Why has data mining suddenly gained the attention of the business 
world?

18. Describe the algorithm and provide example applications for the data 
mining functions.

19. Explain how pivot tables can be employed in data mining.



C H A P T E R3
HIERARCHICAL 
CLUSTERING

3.1 INTRODUCTION

Hierarchical clustering can be broken down into two major  categories�
agglomerative methods and divisive methods. A procedure for forming ag-
glomerative hierarchical groups of mutually exclusive subsets was  developed 
by Ward.1 The grouping technique is �based on the premise that the great-
est amount of information, as indicated by the objective function, is avail-
able when a set of n members is ungrouped.�1 The first step is to select and 
combine the two subsets out of the n possible subsets which would produce 
the least impairment of the optimum value of the objective function, while 

In This Chapter

3.1 Introduction

3.2 Single-Link versus Complete-Link Clustering

3.3 Agglomerative versus Divisive Clustering

3.4 Ward�s Method

3.5  Graphical Algorithms for Single-Link versus Complete-Link 
 Clustering

3.6 Summary

3.7 Exercises

1  Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. American 
Statistical Association Journal, 58, 236-244.
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reducing the number of subsets to n � 1. These n � 1 subsets are then exam-
ined to identify which two subsets should be merged in order to obtain the 
optimum value of the objective function for n � 2 subsets. This procedure 
is repeated until the original n members are in a single set or group. Be-
cause the number of subsets is reduced by one at each step (n � l,..., 1), the 
process is referred to as hierarchical grouping. The grouping that occurs 
at each step usually results in some quantifiable loss, which Ward2 terms 
a value-reflecting number. The functional relation used to obtain a value-
reflecting number is called the objective function. In general, an objective 
function may be any functional relationship that an investigator selects to 
reflect the relative desirability of groupings. In Ward�s1 example, the objec-
tive function represents loss of information and is reflected by the error 
sum of squares (now known as Ward�s Method). Other examples of objec-
tive functions described by Ward1 which have been used by the Personnel 
Research Laboratory, United States Air Force, include:

1. the grand sum of the squared deviations about the means of all mea-
sured characteristics in the clustering of persons to maximize their 
similarity with respect to measured characteristics,

2. the expected cross-training time in the clustering of jobs to  minimize 
cross-training time when personnel are reassigned according to 
 established policies,

3. the amount of job time incorrectly described when clustering job 
 descriptions to minimize errors in describing a large number of jobs 
with a small number of descriptions, and

4. the loss of predictive efficiency when clustering regression equations to 
minimize the loss of predicted efficiency resulting from reductions in 
the number of regression equations (JAN).

An important concept to remember in defining the hierarchical group-
ing mentioned previously is that once two entities are merged, they are 
joined permanently and become a building block for later merges. This is 
one of the key differences between the hierarchical techniques and the op-
timal techniques to be discussed in Chapter 4. Another difference  between 

2  Ward, J. H, Jr. (1961, March). Hierarchical grouping to maximize payoff (Technical  Report 
WADD-TN-61-29). Lackland Air Force Base, TX: Personnel Laboratory, Wright Air 
 Development Division.
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the two methods is how they arrive at the number of groups. If  researchers  
are not interested in the entire hierarchical tree structure, they must de-
cide at what point the �best� clustering has been reached. There are many 
different techniques available to help the user make a selection. See An-
derberg3 and Everitt4 for more information on deciding on the number of 
clusters. Some of the more common hierarchical techniques are the near-
est neighbor (single linkage) method, the furthest neighbor (complete link-
age) method, centroid method, and Ward�s method (mentioned previously). 
The basic technique for these methods is similar. However, there are two 
factors that differentiate between the methods. The first factor is whether 
the technique can be used with similarity measures, distance measures, or 
both. The second factor is how these measures are defined, or, in Ward�s 
terminology, the objective function. Detailed information on these meth-
ods and the methods to be discussed later can be found in a variety of 
cluster analysis or multivariate texts represented by Anderberg3; Everitt4; 
Hartigan5; Jain & Dubes6; and Seber.7

In divisive clustering, the initial starting point is with all entities in one 
group. The first step is to split the group into two subsets. Subsequent steps 
consist of subdividing the subsets until each entity is a separate group. 
There are two classes of methods for deciding how to split the groups. 
With the homothetic methods, the data points are based on binary vari-
ables and the object is to split the data set on one of these variables so as 
to minimize the value of some appropriate measure of similarity between 
the two groups. The splitting process, based on other variables, continues 
until some criterion is reached as discussed in Anderberg.3 Examples of 
homothetic techniques include association analysis and the automatic in-
teraction detector method. The polythetic methods are based on the values 
taken by all of the variables. According to Everitt,4 a technique developed 
by MacNaughton-Smith, Williams, Dale, and Mockett is the most feasible. 
The divisive techniques have not gained the same popularity as the agglom-
erative techniques and their use is minimal.

3  Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press.
4  Everitt, B. S. (1980). Cluster analysis (2nd ed.). New York: Halsted Press.
5  Hartigan, J. A. (1975). Clustering Algorithms. New York: John Wiley and Sons.
6  Jain, A. K., & Dubes, B. C. (1973). Algorithms for clustering data. Englewood Cliffs, NJ: 

Prentice Hall.
7 Seber, G. A. F. (1984). Multivariate observations. New York: John Wiley and Sons.
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3.2 SINGLE-LINK VERSUS COMPLETE-LINK CLUSTERING

Recall the cluster analysis from Chapter 1, a complete-link clustering. 
The following results were obtained:

16.37

14.77

13.64

12.17

1 2 3 4 5

FIGURE 3.1 Complete-Link Clustering.

The dendrogram in Figure 3.1 was generated by the following tables 
as illustrated in Table 3.1. A new matrix is formed by deleting the col-
umn and the row of the cell containing the maximum value. The deleted 
row and deleted column represent the identifier for the new pseudo data 
point. The distance from the pseudo data point to a specified data point 
is the maximum of the distance between the two data points, designated 
by the original row and original column for the pseudo data point, to the 
specified data point.

The single-link clustering is obtained by the same process as the com-
plete-link computations except minimum values are utilized rather than 
maximum as illustrated in Figure 3.2.

Figure 3.2 is based upon the ratio proximity computations in Table 3.2.
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x1 12.08 14.77 4.69 10.58

x2 7.48 12.17 9.17

x3 16.37 13.64

x4 7.87

x2 x3 x4 x5

12.08 14.77 10.58

9.1712.17

13.64

x2 x3,4 x5

x1

x2

x3,4

12.17 13.64

9.17

x2 x3

x1,3,4

x2

12.17

x2

x1,3,4,5

TABLE 3.1 Complete-Link Clustering Matrix Computations.

1 2 3 4
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7.48

FIGURE 3.2 Single-Link Clustering.
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Note that these methods generate distinct clustering sets:
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FIGURE 3.3 Complete-Link Clustering Iterations.
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FIGURE 3.4 Single-Link Clustering Iterations.
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TABLE 3.2 Single-Link Clustering Matrix Computations.
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When should each of these clustering iterations be stopped? An in-
tuitive answer would be based upon the values for L(m). A first step 
would be to plot the number of groups versus L(m) and look for points 
where the curve flattens or at the position where the curve has a �knee� 
or �elbow.�

Number of Clusters versus
L(m): Single-Link Clustering 
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FIGURE 3.5 One Cluster Single-Link Solution.

For example, instead of a one cluster solution, the researcher could 
look for a bend in the curve. This suggests either a two cluster solution, 
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single-link analysis.

Number of Clusters versus
L(m): Complete-Link Clustering 
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FIGURE 3.6 One Cluster Solution for Complete-Link Clustering.

For the complete-link clustering analysis there is a one cluster solution, 
{(x

1
, x

2
, x
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, x

4
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5
)}, when applying either the flatten curve or curve-bending 

method to determine the number of clusters. Clearly the question, �How 
many clusters?�, is difficult to answer. The researcher needs a way to con-
sider merging costs.
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Often information is inaccessible for determining the right number 
of clusters, let alone understanding what is meant by the right number of 
clusters. If every object is a cluster, then the total information about the 
data is present. But then why perform a cluster analysis? Another obvious 
clustering choice is to choose the one cluster solution, then misrepre-
sentation is possible, unless there actually is only one cluster. The em-
phasis in cluster analysis is to generate models which generalize to new 
data. If the data really does fall into k clusters, then more data from the 
same source should fall into the same clusters. There are multiple ways 
for measuring this, based upon redoing the analysis by measuring cluster 
efficiency, which is available when using Ward�s method or a K-Means 
 approach.

1. How much do cluster centers or boundaries change if we rerun 
 clustering on new data?

2. How much do cluster assignments change, during an optimization  
of the existing clustering?

3. How big are the sum-of-squares when assigning new data to the old 
clusters?

4. What is the metric distance between old and new clusterings?

Either new data is required or reusing some of the current data can 
answer these questions.

A distinct but related question on how many clusters are representa-
tive of the data is: �What is the confidence in the statement: �these two 
data points belong to the same cluster�?� First a cross-validation analysis 
should be performed, followed by an examination to determine how often 
the points in question are posted in the same cluster. In general:

1. Clusters should continue to describe new observations of the same 
features.

2. Good clusters should enable the researcher to generate new features.

3. Good clusters should be a part of a valid system which enables making 
predictions about new conditions.

4. A valid cluster membership system should provide explanations for the 
experimental results.
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3.3 AGGLOMERATIVE VERSUS DIVISIVE CLUSTERING

Divisive hierarchical clustering starts with the complete data set con-
sidered as a single-cluster, and splits it into two child-clusters. The process 
is iterated recursively until there is nothing but singletons left. The same 
dendrogram and selection procedures that are used for agglomerative hier-
archical clustering may also be used for the divisive approach.

Agglomerative and divisive hierarchical clustering are not mirror im-
ages of each other because:

1. The agglomerative method requires that a table of pair-wise distances of 
clusters be updated after each merge. Choosing the next merge consists 
of finding the smallest distance in this table. Each step in the divisive 
method requires that a cluster be scrutinized for splitting. Maintaining 
a strict splitting criterion, requires that all possible 2-splits of the cluster 
be considered. Then the best choice is retained, resulting in a method 
that becomes unmanageably long even for modest size clusters. A rea-
sonable approach is to forget about finding the best split, using short-
cuts, and be satisfied with identifying just a �good� split.

2. The divisive method usually provides clusters that are easier to interpret 
than clusterings produced by the agglomerative method. The reason  
is that being close according to Ward�s criterion, discussed in the next 
section, can be interpreted in terms of cluster geometry. Whereas parti-
tioning a cluster into two clusters with a large Ward distance generates 
two child-clusters that are compact and well separated. The divisive 
method is closer to the way the human eye does clustering than the 
 agglomerative method.

In practice, the difficulties associated with the divisive method make 
the agglomerative method more widely used.

3.4 WARD’S METHOD

Ward�s method is associated with analysis of variance, instead of using 
distance metrics or measures of association, using an error measurement 
at each iterative step. This method starts out at the leaves and work its way 
to the trunk of the related dendrogram. Ward�s method starts out with n 
clusters of size 1 and continues until all the observations are included into 
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one cluster. This method is most appropriate for quantitative variables, and 
not binary variables.

Ward�s method is based on the notion that clusters of multivariate ob-
servations should be approximately elliptical in shape. Therefore, it would 
follow that points would fall into an elliptical shape when plotted in a  
p-dimensional scatter plot.

The notation employed follows: Let X
ijk

 denote the value for variable 
j in observation i belonging to cluster k. Furthermore, for this particular 
method, we have to define the following error sum of squares (ESS):

ESS � ���� | |.x xijk i kkji

2

where for a given classification observation i belongs to cluster k, x
ij
 is the 

value of variable j for observation i, and xi k.  is the mean of variable j in 
cluster k. The summation process includes all of the units within each clus-
ter. A comparison of the individual observations for each variable against 
the cluster means for that variable is calculated. A small value for ESS in-
dicates that data is close to the cluster means, implying clusters of similar 
units.

The total sums of squares (TSS) is defined as:

TSS � ���� | |..x xijk kkji

2

again where for a given classification observation i belongs to cluster k, x
ij
 is 

the value of variable j for observation i, and x k..  is the grand mean in clus-
ter k. The summation process includes all of the units within each cluster. 
A comparison of the individual observations for each variable against the 
grand mean for that variable is computed.

R-squared, r
TSS ESS

TSS
2 �

�
, is interpreted as the proportion of varia-

tion explained by a particular clustering of the observations.

Therefore, the summations are to find the squared error of observation 
i in cluster k for all the variables, for all observations i within cluster k, and 
to find the total error over all clusters k.

Ward�s method starts with all sample units in n clusters of size one. In 
the first step of the algorithm, n � 1 clusters are formed, one of size two 
and the remaining of size one. The error sum of squares and r2 values are 
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then computed. The pair of sample units that yield the smallest error sum 
of squares, or equivalently, the largest r2 value will form the first cluster. 
Then, in the second step of the algorithm, n � 2 clusters are formed from 
that n � 1 clusters as defined in step 2. These may include two clusters 
of size 2, or a single cluster of size 3 including the two items clustered in  
step 1. Again, the value of r2 is maximized. Thus, at each step of the algo-
rithms, clusters or observations are combined in such a way as to minimize 
the results of error from the squares or alternatively to maximize the r2 
value. The algorithm stops when all sample units are combined into a single 
large cluster of size n.

Consider the following data file:

ID Gender Age Salary

1 F 27 19,000

2 M 51 64,000

3 M 52 100,000

4 F 33 55,000

5 M 45 45,000

TABLE 3.3 Original Sample Employee Data 
Table.

First, each variable must be quantitative, therefore, change the data in 
Table 3.3 into the table found in Table 3.4.

ID Gender Age Salary

1 1 0.00 0.00

2 0 0.96 0.56

3 0 1.00 1.00

4 1 0.24 0.44

5 0 0.72 0.32

TABLE 3.4 Fully Quantitative Version of 
Table 3.3.

A sample set of computations for the square error of all IDs for all pairs 
of object includes:

dist((ID2), (ID1)) = SQRT(1 + (.096)2 + (0.56)2) = 2.24

dist((ID2), (ID3)) = SQRT(0 + (0.04)2 + (0.44)2) = 0.44

dist((ID2), (ID4)) = SQRT(1 + (0.72)2 + (0.12)2) = 1.24

dist((ID2), (ID5)) = SQRT(0 + (0.24)2 + (0.24)2) = 1.15
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dist((ID1), (ID3)) = SQRT(1 + (�1.00)2 + (1.00)2) = 3.00

dist((ID1), (ID4)) = SQRT(0 + (�0.24)2 + (�0.44)2) = 0.25

dist((ID1), (ID5)) = SQRT(1 + (�0.72)2 + (�0.32)2) = 1.62

dist((ID3), (ID4)) = SQRT(1 + (0.76)2 + (0.56)2) = 1.89

dist((ID3), (ID5)) = SQRT(0 + (0.28)2 + (0.68)2) = 0.54

dist((ID4), (ID5)) = SQRT(1 + (�0.48)2 + (0.12)2) = 1.24

which, on the first iteration of Ward�s method, generates the new clustering, 
{(ID1, ID4), (ID2), (ID3), (ID5)} at L(1) = 0.25 from the original cluster 
{(ID1), (ID2), (ID3), (ID4), (ID5)}.

For the second iteration, perform the following computations and ob-
tain the resultant clustering, using the revised data table.

Cluster Gender Age Salary

((ID1), (ID4)) 0 0.12 0.22

(ID2) 0 0.96 0.56

(ID3) 0 1.00 1.00

(ID4) 1 0.24 0.44

TABLE 3.5 Second Iteration Table Using Ward’s Method.

dist(((ID1), (ID4)), (ID2)) = SQRT(0 + (�0.84)2 + (�0.33)2) = 0.82

dist(((ID1), (ID4)), (ID3)) = SQRT(0 + (�0.88)2 + (�0.78)2) = 1.38

dist(((ID1), (ID4)), (ID5)) = SQRT(1 + (�0.12)2 + (�0.22)2) = 1.86

dist((ID2), (ID3)) = SQRT(0 + (�0.04)2 + (�0.44)2) = 0.20

dist(((ID2), (ID5)) = SQRT(1 + (�0.72)2 + (�0.12)2) = 1.53

dist((ID3), (ID5)) = SQRT(1 + (0.76)2 + (0.56)2) = 1.24

This generates the clustering, {(ID1, ID4), (ID2, ID3), (ID5)} at  
L(2) = 0.20.
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On the third iteration, based upon the following table, the results are:

Cluster Gender Age Salary

((ID1), (ID4)) 0 0.12 0.22

((ID2), (ID3)) 0 0.98 0.78

(ID5) 1 0.24 0.44

TABLE 3.6 Third Iteration Table Using Ward’s Method.

dist(((ID1), (ID4)), ((ID2), (ID3))) = SQRT(0 + (�0.86)2 + (�0.56)2) = 1.05

dist(((ID1), (ID4)), (ID5) = SQRT(1 + (�0.12)2 + (�0.22)2) = 1.06

dist(((ID2), (ID3)), (ID5)) = SQRT(1 + (�0.72)2 + (0.34)2) = 1.63

which generates the clusterings {(ID1, ID4), (ID2, ID3), (ID5))} with 
L(3) = 1.05. Note, in this example the clustering could have been {((ID1), 
(ID4)), (ID5)), ((ID2), (ID3))} instead.

On the fourth generation we obtain:

Cluster Gender Age Salary

(((ID1), (ID4)), ((ID2),

(ID3)))

0 0.55 0.50

(ID5) 1 0.24 0.44

TABLE 3.7 Fourth Iteration Table Using Ward’s Method.

dist((((ID1), (ID4)), ((ID2), (ID3))), (ID5)) = SQRT(1 + (0.31)2 + (0.06)2) = 1.10 
which generates the clustering {ID1, ID2, ID3, ID4, ID5} where L(4) = 1.10.

3.5 GRAPHICAL ALGORITHMS FOR SINGLE-LINK VERSUS 
COMPLETE-LINK CLUSTERING

Consider the proximity data matrix in Table 3.8:
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X1

X2

X3

X4

X2 X3 X4 X5

6.7 4.2 7.1 5.2

7.7 2.1 4.4

2.3 5.4

8.2

TABLE 3.8 Proximity Table.

A picture of the data is needed that can be easily interpreted. Dendro-
grams offer a partial solution because they list the clustering and a horizon-
tal cut of a dendrogram defines and identifies clusters, but not the actual 
dissimilarity values for which clusters are formed. Because any hierarchical 
clustering scheme is simply a way of transforming a proximity matrix into 
a dendrogram, then a solution to the latter problem is to construct a se-
quence of proximity graphs.

 Step 1: Represent the proximity as a graph where nodes represent the 
objects, x

i
 for I = 1 to 5. The edges are the minimum distance between 

the nodes and, simultaneously when recorded, are the least similar pair 
of edges in the proximity graph.

 Step 2: Repeat Step 1 until the edges are exhausted.

For the given proximity matrix the following sequence of graphs is 
 generated:

2 2.1

1

4

3

5 1

2 2.1

G(1) G(2) G(3) G(4)

4

2.3
3

5

3

1

2 2.1 4

2.3

5

3

4.4

4.24.2 1

2 2.1 4

2.3

5
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x1 6.7 4.2 7.1 5.2

x2 7.7 2.1 4.4

x3 2.3 5.4

x4 8.2

x2 x3 x4 x5

x1 6.7 4.2 5.2

x2,4 2.3 4.4

x3 8.2

x2,4 x3 x5

x1 4.2 5.2

x2,3,4 4.4

x2,3,4 x5

x1,2,3,4 4.4

x5 

TABLE 3.9 Single-Link Clustering Process.
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FIGURE 3.7 Threshold Graphs.

These graphs generate threshold dendrograms. Figure 3.6 illustrates the 
single-link clustering with the threshold dendrogram. Start with the proximity 
matrix and on each iteration apply the minimum distance to all clusters formed.
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A proximity dendrogram posts both the proximities and the proximi-
ties cluster formation. The results indicate a two cluster solution: {(x

2
, x

3
, 

x
4
), (x

1
, x

5
)}.

3.6 SUMMARY

�� Hierarchical cluster analysis is a very popular clustering paradigm that 
includes several different methods.

2 4 3 1 5

FIGURE 3.8 Threshold Dendrogram: Single-Link Clustering.

2

1

2

3

4

5

4 3 1 5

FIGURE 3.9 Proximity Dendrogram for Single-Link Clustering.
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�� Given a data set, a hierarchy is a set of subsets of data (clusters) such 
that:

1. One cluster contains the complete set of observations.

2. Another cluster contains all the singleton observations.

3. For every pair of clusters in the hierarchy, the pair of clusters either 
has an empty intersection or else one cluster is included in the other 
cluster (no overlapping).

4. Any cluster (except the singletons) is partitioned into exactly two 
clusters of the hierarchy.

�� The structural form for a clustering solution graphically is represented 
by a Dendrogram (or tree).

�� Hierarchical agglomerative clustering methods using the agglomera-
tive approach appear to have the advantage of finding any number of 
compact, spherically shaped clusters at a certain level which cover the 
sample density. Divisive hierarchical and agglomerative hierarchical 
clustering methods employ �divide and conquer� algorithms.

�� Ward�s method performs in a manner similar to the decision tree ap-
proach, namely it combines the two clusters at each stage which mini-
mize the squared error function or Euclidean sum of squares. Ward�s 
method uses a greedy algorithmic analysis.

�� Requirements for any clustering method should:

1. Have scalability

2. Deal with different types of attributes

3. Discover clusters with arbitrary shape

4. Have minimal requirements for domain knowledge to determine 
input parameters

5. Be able to deal with noise and outliers

6. Be insensitive to order of input records

7. Have the curse of dimensionality

8. Have interpretability and usability



44  Cluster Analysis and Data Mining

�� Common agglomerative hierarchical clustering methods are:

Single-link or nearest neighbor method: where the dissimilarity 
between two clusters is equal to the minimum of all distances 
between the cases in the participating clusters.

Complete-link or farthest neighbor method: the dissimilarity 
between two clusters is defined to be the maximum for all possible 
distances between the cases in the two participating clusters.

Ward’s method: where the dissimilarity between two clusters is 
defined to be the loss of information from joining the two clusters. 
Loss of information is found by measuring the increase in the error 
sum of squares, or the sum of squared deviations of each pattern from 
the centroid for the cluster.

Group average (mean) method: uses the average value of pair wise 
links within a cluster to determine intercluster similarity, because all 
objects contribute to intercluster similarity.

Centroid method: where the dissimilarity between two clusters is 
defined by the respective centroids. The squared Euclidean distance 
instead of the Euclidean should be used as the dissimilarity when 
applying the centroid method to a data set.

Median method: where the dissimilarity between clusters is defined 
by the distance between the medians for the two clusters. Again the 
Euclidean squared distance instead of the Euclidean distance should 
be used for this method.

When performing a cluster analysis, the investigator should apply sev-
eral of these methods to the data and seek the majority resultant clustering 
across the methods as the final clustering chosen. For example, consider 
the following data {(12, 3), (16, 19), (23, 13), (20, 23), (8, 20), (16, 9), (1, 23),  
(25, 20), (18, 6), (5, 28)} with associated labels {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 
which are points in two dimensional Euclidean space, these methods gen-
erate the results below:
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FIGURE 3.10 Sample Study Data Set.

Clusterings are obtained using several of the hierarchical clustering 
methods and followed by obtaining the majority clustering final solution.

NOTE: All figures and dendrograms in the rest of this Chapter were 
generated by Wessa8, using the R framework system

8  Wessa, P., (2008). Hierarchical Clustering (v1.o.2) in Free Statistics Software (v1.1.23-r7) 
office for Research and Development and Education, URL http://www.wessa.net/rwasp-
hierarchicalclustering.wasp/.
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Clustering: {{3, 6, 9, 1}, {4, 2 8}, {7, 5, 10}}

FIGURE 3.11 Single-Link Clustering for the Sample Study.
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Dendrogram
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Clustering: {{2, 4, 3, 8}, {1, 6, 9}, {5, 7, 10}}

FIGURE 3.12 Complete-Link Clustering for the Sample Study.
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Dendrogram

8

C
as

es

Height
Method: median

6

4

9

3

5

12 10 8 6 4 2 0

10

7

1

2

Summary of Dendrogram

Label Height

3.60555127546399

5.65685424949238

6.02895495411826

6.05826542284768

6.28181467869005

6.40312423743285

6.47910736623251

9.10508783423627

1

2

3

4

5

6

7

8

9 11.7692606295293

Clustering: {{2, 3, 4, 8}, {1, 6, 9}, {5, 7, 10}}

FIGURE 3.13 Median Clustering for the Sample Study.
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Clustering: {{2, 3, 4, 8}, {1, 6, 9}, {5, 7, 10}}

FIGURE 3.14 Centroid Clustering for the Sample Study.

Final Clustering: {{1, 6, 9}, {2, 3, 4, 8}, {5, 7, 10}}

NOTE: 2 and 6 are identical points.

The following discussion is a sample study of sixty-three software com-
panies involved in software development projects. Identifying how many 
clusters of these companies exist will be pertinent to eventually making an 
effective assessment comparison of the companies common variates for es-
timating software development costs. Once the clusters are identified then 
the cluster centroids can be used to represent the clusters. Then a multiple 
regression analysis and predictive study should be performed on each clus-
ter individually.
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t01 t02 t03 t04 t05 t06 t07 t08 t09 t10 t11 t12 t13 t14 t15

5 3 3 2 3 4 4 4 3 3 2 4 3 5 3

4 3 5 3 3 3 4 5 4 5 4 4 4 4 5

2 3 3 3 3 3 2 2 4 3 4 4 4 4 4

3 3 2 3 3 4 2 3 4 5 4 3 2 3 3

2 2 4 2 2 1 3 5 4 4 5 4 3 2 3

3 3 3 4 3 3 4 3 4 4 3 4 5 4 4

2 3 3 3 3 3 2 2 4 4 4 4 4 5 4

4 3 5 4 3 2 3 5 5 5 3 4 4 2 3

2 3 3 2 2 2 4 5 4 3 3 3 3 2 3

4 3 3 2 1 2 4 5 3 2 2 2 3 4 2

2 3 2 3 3 3 2 5 3 4 2 3 2 3 3

5 3 4 2 3 1 3 3 3 2 2 2 1 1 2

2 2 2 4 3 3 1 4 4 3 4 4 1 5 1

2 3 3 4 2 2 2 4 4 3 5 3 3 4 2

2 3 2 4 3 3 3 5 4 3 3 4 2 4 3

3 4 3 3 3 3 3 3 5 5 2 4 3 3 3

2 3 2 4 3 3 4 4 4 3 2 4 3 3 3

4 1 3 3 3 4 4 5 4 4 4 4 3 3 4

4 3 4 3 4 4 5 4 5 4 5 5 3 1 4

3 2 3 3 3 2 4 5 4 4 4 4 4 2 3

4 3 4 4 4 2 3 4 5 5 3 4 4 2 3

4 4 2 3 3 3 4 3 4 4 5 3 2 3 3

4 3 2 4 3 3 4 4 5 4 3 4 2 4 3

4 3 2 3 2 3 2 4 4 4 2 2 3 3 3

2 2 2 4 3 3 4 4 5 5 5 4 2 2 4

4 3 4 3 3 3 3 3 4 4 3 3 2 3 3

4 3 3 4 3 3 4 5 4 4 4 4 4 2 4

3 3 3 4 3 4 2 4 4 3 2 4 4 2 4

1 4 2 3 3 4 2 3 2 3 2 4 2 4 3

3 4 2 3 3 4 3 5 3 3 3 4 4 5 3

2 4 3 2 2 2 3 4 5 4 4 4 3 3 4

1 3 3 3 3 2 4 5 3 2 3 3 3 4 3

3 4 2 3 3 3 3 4 3 4 2 4 3 3 3
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3 3 3 4 3 3 2 3 4 2 3 4 2 4 3

4 2 4 3 5 3 4 5 5 4 3 5 4 4 5

4 2 4 3 5 3 5 3 5 5 4 5 3 4 5

4 2 4 3 5 3 5 3 5 5 4 5 3 4 5

3 3 4 2 3 2 3 4 3 3 3 4 4 3 3

4 3 4 4 4 3 3 4 4 4 5 5 4 3 4

2 3 2 4 3 3 3 4 3 3 3 3 2 4 3

4 2 2 3 4 4 4 2 4 2 4 3 4 3 4

3 3 3 2 2 3 3 3 4 3 3 4 4 4 3

3 4 2 4 3 3 3 3 5 5 3 3 2 3 3

4 3 3 3 3 3 2 3 4 3 3 4 3 3 3

3 3 4 4 4 4 3 4 4 3 5 4 3 2 3

3 3 3 4 3 3 3 3 5 3 4 4 3 2 4

4 4 3 5 4 4 5 3 4 4 3 5 2 4 4

4 2 2 3 3 2 4 4 4 4 3 4 4 5 3

5 5 3 3 2 3 4 5 5 4 4 4 3 4 4

4 4 2 3 4 3 2 2 3 3 3 3 2 4 4

4 3 2 3 3 3 3 3 4 3 4 4 4 3 3

2 3 3 3 3 3 4 2 4 3 4 4 2 3 3

2 3 3 4 3 3 3 4 4 3 2 4 4 2 3

1 4 4 2 3 3 2 3 2 2 2 4 5 3 3

4 3 5 3 3 3 4 5 4 3 3 4 3 3 3

3 4 5 3 3 3 3 3 4 4 2 4 4 3 3

3 4 3 3 3 3 3 4 4 4 4 4 4 4 3

2 3 3 2 2 2 4 5 4 3 3 4 4 2 3

4 2 4 3 3 3 3 3 5 3 3 4 3 4 4

2 3 3 4 3 3 3 4 4 3 4 3 2 4 3

3 3 3 3 3 4 4 5 5 5 5 4 3 2 3

2 3 2 3 3 2 3 5 5 4 5 5 1 5 4

2 4 3 3 3 3 4 3 5 5 5 4 4 5 4

TABLE 3.10 Common Software Cost Data Set.



52  Cluster Analysis and Data Mining

t01 customer participation

t02 development environment

t03 staff availability

t04 level and use of standards

t05 level and use of tools

t06 logical complexity of the software

t07 requirements volatility

t08 quality requirements

t09 efficiency requirements

t10 installation requirements

t11 analysis skills of staff

scale: 0 (none) to 5 (considerable)

t12 applications experience of staff

t13 tools skills of staff

t14 project and team skills of staff

t15 unadjusted experience function points

TABLE 3.11 Pivot Table for Table 3.10.
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FIGURE 3.15 Common Software Cost Data Dendrogram.

Ward�s method generates the best interpretation for the final clustering:

 {{36, 37, 2, 35, 9, 58, 5, 31, 8, 21, 19, 39, 45, 25, 61, 18, 20, 27}, {3, 7, 63, 6, 
57, 41, 46, 52, 26, 59, 34, 44, 51, 16, 43, 4, 22, 47, 49, 23, 48}, {32, 60, 15, 40, 
62, 13, 14, 28, 17, 53, 24, 11, 33, 29, 50, 12, 10, 1, 30, 54, 38, 42, 55, 56}} or

 {{2, 5, 8, 9, 18, 19, 20, 21, 25, 27, 31, 35, 36, 37, 39, 45, 58, 61}, {3, 4, 6, 7, 
16, 22, 23, 26, 34, 41, 43, 44, 46, 47, 48, 49, 51, 52, 57, 59, 63}, {1, 10, 11, 12, 
13, 14, 15, 17, 24, 28, 29, 30, 32, 33, 38, 40, 42, 50, 53, 54, 55, 56, 60, 62}}

Group I:{2, 5, 8, 9, 18, 19, 20, 21, 25, 27, 31, 35, 36, 37, 39, 45, 58, 61} 
has centroid:

3.28 2.61 3.61 3.11 3.33 2.78 3.83 4.44 4.50 4.22  
4.06 4.22 3.39 2.56 3.78

Group II:{3, 4, 6, 7, 16, 22, 23, 26, 34, 41, 43, 44, 46, 47, 48, 49, 51, 52, 
57, 59, 63} has centroid:

3.33 3.24 2.76 3.33 3.05 3.10 3.24 3.05 4.33 3.71  
3.57 3.81 3.05 3.62 3.43
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Group III:{1, 10, 11, 12, 13, 14, 15, 17, 24, 28, 29, 30, 32, 33, 38, 40, 42, 
50, 53, 54, 55, 56, 60, 62} has centroid:

2.71 3.21 2.83 3.08 2.83 2.88 2.83 4.00 3.46 3.04  
2.75 3.54 2.83 3.54 2.92

Group I stated considerable importance to quality requirements, effi-
ciency requirements, installation requirements, analysis and application ex-
perience of staff. Group I places an emphasis on all requirements coupled 
with the analysis skills and application experience of the staff.

Group II stated considerable importance with respect to only in-
stallation requirements and modest concern for efficiency requirements, 
analysis and application experience of staff, and project and team skills of 
staff. Group II places an emphasis primarily on installation requirements 
with modest concern regarding efficiency requirements plus staff project 
and team as well as analysis skills combined with the staff�s application 
 experience.

Group III stated considerable importance with respect to quality re-
quirements plus modest concern for application experience skills of staff 
plus project and team skills of staff. Group III places emphasis primarily on 
quality requirements and has a modest concern on all other issues.

3.7 EXERCISES

1. Given the ordinal proximity matrix for n = 5:

x
1

x
2

x
3

x
4

x
5

x
1

0 6 2 8 7

x
2

6 0 1 5 3

x
3

8 1 0 10 9

x
4

2 5 10 0 4

x
5

7 3 9 4 0

TABLE 3.12 Hypothetical Proximity Matrix.

 (a)  Generate an agglomerative hierarchical clustering derived from a 
sequence of threshold graphs.

 (b)  Generate a divisive hierarchical clustering derived from a 
 sequence of threshold graphs.
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 2. How should ties in proximity be handled for:

 (a) the single-link method.

 (b) the complete-link method.

 3. Obtain the clustering found by applying Ward�s method to the proxim-
ity matrix in problem 1.

 4. Why do snake-like chain of clusters happen in single linkage methods?

 5. What advantage is there for complete-link clustering as compared to 
single-link clustering?

 6. Can the following data file have Ward�s method applied to obtain a 
hierarchical clustering?

 Defend your answer.

Runner ID Gender Age Height Weight 5k Time

1 Male 19 5' 9" 150# 17:41

2 Female 21 5' 7" 131# 21:45

3 Female 32 5' 4" 115# 23:22

4 Gender Age Height Weight Time

5 Male 38 5' 10" 185# 26:00

TABLE 3.13 Hypothetical Runner Data Set.

 7. Run all the hierarchical methods discussed in the chapter on the 
 problem 1 data set.

 8. Characterize the single-link and complete-link clustering methods 
geometrically.

 9. Use a hierarchical clustering of distances in miles between some Texas 
cities to obtain both a single-linkage and a complete-linkage solution. 
Be sure to interpret your results.

10. Use the Neymann-Scott cluster generator, presented in Jain9 on pages 
273-274, to generate an initial configuration. An important Pascal pro-
gram, an implementation of the modified Neymann-Scott routine, can 
be used to generate samples of spherically shaped Gaussian clusters 
which are located randomly in the sampling window. The input param-
eters necessary for the Neymann-Scott algorithm include:
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 n, the number of points to be generated,

 d, the dimensionality of space,

 s, the cluster spread,

 nmin, the minimum number of points per cluster,

 I, the overlap index, and

 c, the number of clusters desired.

The points in the d-dimensional space are independent samples from 
d-dimensional Guassian distributions that are centered at a randomly cho-
sen cluster center. The overlap index, I, has a value between 0 and 1. Zero 
indicates well-separated clusters, and a one indicates coincident clusters. 
The Neymann-Scott algorithm is described by Algorithm. The IMSL nor-
mal random number generator, which generates standard normal values 
was used to generate the means and the points around each mean in the 
Neymann-Scott program.

1. Establish cluster sizes {n
1
, n

2
,�, n

c
} for which the sum of the cluster 

sizes is equal to the total number of data units desired, and no cluster 
has less than nmin points. This is accomplished by setting n

k
 to nmin for 

all k, then selecting clusters at random and incrementing their size by 1 
until the sum of the cluster sizes is n.

2. Generate cluster center µ
i
 at random in the sampling window (unit 

hypercube).

3. Scatter n
i
 patterns around µ

i
 according to a N(µ

i
, �2) distribution. Reject 

patterns falling outside the sampling window. Continue until n
i
 patterns 

have been generated inside the sampling window.

4. If any of the overlaps, O(i, i � 1), O(i, i � 2),..., O(i, 1) exceeds I,  repeat 
steps 2 and 3.

5. If 50 repetitions do not succeed in generating a new cluster center,  
increase I to the smallest overlap encountered in the 50 repetitions  
and repeat steps 2 to 4.

6. Repeat steps 2 to 5 for i from 1 to c.



Hierarchical Clustering  57

Source: Jain and Dubes9

Algorithm: Neymann-Scott Algorithm for Generating Clustered Data

Use a software clustering/statistical package to generate hierarchical 
clusterings for a variable number of patterns and variable number of clus-
ters. The Neymann-Scott algorithm enables researchers in cluster analysis 
to perform Monte Carlo studies. A Monte Carlo study involves artificial 
data that is generated through the use of a random number generator and 
the probability distribution of interest. The interested reader should study 
Shannon.10

 9  Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Englewood Cliffs, 
NJ: Prentice-Hall, Inc.

10  Shannon, R. (1975). System Simulation The Art and Science. Englewood Cliffs, NJ: 
 Prentice-Hall, Inc.
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PARTITION CLUSTERING

4.1 INTRODUCTION

The basic method used by the optimization techniques is to obtain an 
initial partition of the data units and then alter the cluster membership to 
get a better partition, i.e., until a local optimum is found. The various meth-
ods differ as to how they arrive at an initial partition and how they define 
�better� (i.e., the objective function). The techniques in this section differ 
from the hierarchical techniques in two ways. First, members are allowed 
to change cluster membership. So, a data point poorly classified in an early 
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cycle can be reclassified in a later step. Second, the number of clusters 
must be specified in advance. If the structure of the data is known ahead of 
time, then this is not a problem. Otherwise, two possible suggestions are to: 
(1) try a number of different partitions, or (2) use a hierarchical technique 
first to help decide on the number of clusters.

4.2 ITERATIVE PARTITION CLUSTERING METHOD

The following discussion provides a strategy for grouping objects into 
clusters, the minimization of square-error. Essentially, the task is to find  
the partition for a fixed number of clusters that minimizes the square er-
ror. The reader is asked to defend the fact that Ward�s method employs 
square-error in a distinct manner (refer to 3.4 of Chapter 3). Such a strategy 
is called a method, not an algorithm. An algorithm is the development or 
foundation leading to a computer program which implements the strategy.

Iterative Partition Clustering Method

 Step 1: Start with the fixed number of clusters and select an initial 
 partition of the objects.

 Step 2: After determining the cluster centers, assign each object to the 
object�s nearest cluster center.

 Step 3: Determine the new cluster centers, or centroids of the clusters, 
based on the new partition created by the completion of step 2.

 Step 4: Repeat steps 2 and 3 until an optimum value of the objective 
function is achieved.

 Step 5: If possible, adjust the number of clusters through merging and 
splitting existing clusters. At this time, removal of cluster outliers can  
be made.

Repeat Steps 2�5 until cluster membership stabilizes.

This is a computationally explosive problem. Some authors like Dubes 
and Jain1 state that there are only 34,105 distinct partitions of 10 objects 
into 4 clusters, which explodes into 11,259,666,000 for 19 clusters. How 

1  Jain, A. K. & Dubes, R. C. (1988). Algorithms for Clustering Data. Englewood Cliffs, NJ: 
Prentice Hall.
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would the researcher overcome this road block? Manual computations, or 
even programmed efforts on a small computer, are not the answer.

The use of an objective function is an answer. Objective functions are 
intentionally restricted to be evaluated for a small set of reasonable par-
titions. The hill climbing technique is particularly used, which is a local-
ized greedy algorithmic approach and often found in artificial intelligence 
 applications. These algorithms tend to be computationally efficient but 
sometimes converge to local minima of the objective function.

The following example illustrates the computations involved in an 
 iterative partition method. Suppose the following partition of points in 
2- dimensional Euclidean space and the initial centroids, chosen randomly, 
are given by:
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FIGURE 4.1 Randomly Generated Data.

Then the distance matrix generated, using the Euclidean distance 
 metric, is:

C1 C2 A B C D E F

O 5.39 3.16 2.00 3.00 5.10 6.71 4.47

5.39 0 8.06 7.07 8.25 1 1.41 1

TABLE 4.1 Euclidean Distance Matrix.

The first row of the distance matrix contains the distance of each point 
from C1, the first centroid. The second row contains the distances of each 
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point from C2, the second centroid. For instance, the distance of C from 

C1 is ( ) ( )3 3 1 42 2� � �  and from C2 is ( ) ( )1 3 4 42 2� � � . The resultant 
membership matrix, where a value of 1 indicates the object is assigned to 
the cluster while 0 indicates nonmembership, generated is:

C1 C2 A B C D E F

O 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1

TABLE 4.2 Membership Matrix.

Because the memberships have been resolved, we can compute the 
new centroids. Note that each centroid is simply the average coordinate 
among the members of the group. Thus,

C1 = 
2 2 3

3

4 3 3

3

� � � ��
��

�
��

,  = (2.33, 3.66) and 

C2 = 
2 0 1

3

4 5 3

3

� � � � � � ��
��

�
��

,
( ) ( ) ( )

 = (1, �4)

resulting in:
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FIGURE 4.2 First Iteration Centroids.

At the end of the first iteration, C1 has been located closer to the actual 
cluster of {A, B, C} while C2 is still close to a potential group of {D, E, F}. 
None of the data points change cluster membership; therefore, this com-
pletes the overall process.
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4.3 THE INITIAL PARTITION

Once the number of clusters has been decided on, the next step is to de-
cide on the initial partition (i.e., to which clusters the data points will initially 
be assigned). There are a number of different methods that can be used. In 
the following discussion, let k refer to the number of clusters, and n

i
 refer 

to the number of entities in the ith cluster (i = 1 to k: n
1
 + n

2
 + . . . + n

k
 = n).
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FIGURE 4.3 2nd Iteration Data Set.

Method 1: The simplest method is to choose the first k data points to 
act as cluster centers.

C1 C2 A B C D E F

O 5.52 0.5 0.5 1.11 7.5 10.2 6.58

5.52 0 6.02 5.02 6.02 4.03 7.15 5.02

TABLE 4.3 2nd Iteration Distance Matrix.

C1 C2 A B C D E F

O 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1

TABLE 4.4 2nd Iteration Membership Matrix.

In the last example, set the clusters to {A, B, C} and {D, E, F}. Using 
method 1 results in C1 = B and C2 = C:
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B, C1

F
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FIGURE 4.4 First k Data Points Used for Initial Partition.

The following is the entry for the data:

2 3 B

3 4 C

1 –3 F

2 4 A

0 –5 E

2 –4 D

The distance matrix becomes the data shown in Table 4.5.

C1 C2 A B C D E F

O 1.41 1 0 1.41 7.0 8.25 6.08

1.41 0 1.41 1.41 0 9.64 9.48 7.28

TABLE 4.5 Initial Partition Distance Matrix.

The associated membership matrix is shown in Table 4.6.

C1 C2 A B C D E F

1 0 1 1 0 1 1 1

0 1 0 0 1 0 0 0

TABLE 4.6 Initial Partition Membership Matrix.
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New centroids [C1 = (3.4, �1) and C2 = C], generating a new partition 
C, D, E, and F where C has changed its cluster membership, is shown in 
Figure 4.5.
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FIGURE 4.5 First Iteration Data and Centroids.

At the end of this iteration, the clusters are {A, B, D, E, F} and {C}. 
This radical change in cluster membership demonstrates the impact that 
the initial partitioning has upon the results generated in an iterative parti-
tion method.

Method 2: A second method that tries to account for any nonrandom 
sequence is to number the entities from 1 to n and choose the integer parts 
of n/k, 2n/k, . . ., (k � 1)n/k and n for the initial cluster centers.

For the current example, n = 6 and k = 2. Then we would choose points 
6/2 and (2�6)/2 or points C1 = (3, 4) and D = (2, �4). In this case, we would 
retain the original clusters at the end of the first iteration.

Method 3: A third method is to choose the k data points randomly from 
the data set. In these three methods, once the k seed points have been 
chosen, the remaining entities are then placed in the cluster that they are 
closest to, usually using the Euclidean squared distance.

Method 4: A fourth method is to partition the data units so that the first 
n

1
 in the first partition, the next n

2
 are in the second cluster, and the last n

k
 

are in the k cluster.
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The methods listed previously, as well as others, are described in more 
detail in Anderberg.2

Method 5: A final method, which is discussed by Hartigan3 is to decide 
on the appropriate cluster for each individual data unit by use of the formula:

C K Max Min� �
�� Vii

p

1
/ ( )

where, C is the cluster number to assign to the data unit (C = 1, 2,..., K);  
K is the total number of clusters; V

i
 is the number of variables being used 

to cluster (i =1, 2,..., p); Min is the minimum score when all the variables 
arc summed for each data unit; and Max is the maximum score when all the 
variables are summed for each data unit.

4.4 THE SEARCH FOR POOR FITS

Once the data points have been allocated to an initial partition, the next 
step is to search for poor fits. The two most popular types of clustering cri-
teria are variations on the k-means technique and procedures based on the 
fundamental matrix equation

T = W + B

where T is the total dispersion matrix and W and B are the matrices of 
within-cluster and between-cluster variation, or scatter.

Assume the data points being studied have d-dimensional patterns and 
they are separated into K clusters, n

k
 rows for cluster k, k = 1 to K. Then the 

data columns for the patterns in the kth cluster are 
� �

�
�

x x xk k
n

k
T

k1 2
� � ��� ��
( ) ( ) ( ), , ,  

where 
� � �

�
�

x x x xj
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j
k

j
k

jd
k

T
� � � �� �

�
�
�

( ) ( ) ( ) ( ), , ,1 2 . For the ith feature in the kth clus-

ter, the mean is:

m
n

xi
k

k

ji
k

j

nk( ) ( )�
�

��
�

�� ��
1

1

Then the vector of feature means for the kth group is:

�
�m m m mk k k

d
k T( ) ( ) ( ) ( ), , ,� �� ��1 2

2 Anderberg, M. R. (1973). Cluster analysis for applications. New York: Academic Press.
3 Hartigan, J. A. (1975). Clustering Algorithms. New York: John Wiley & Sons.
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Therefore the grand mean, also a vector, is:
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 is the total scatter matrix.

The within scatter matrix for the kth cluster is:
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Then B, the between scatter matrix is:
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K-means clustering is to minimize the clustering objective function.

minH K K i ki Ck
J J x m

k

, where � �
���

2

and H if x Cjk j k= = �{ , }0 1 1nxK where H  and 0 otherwise.

It is well known that T = W + B. In the case of k-means clustering we 
have:

J Trace W Trace T BK = = �( ) ( )

Note that Trace(T) is a constant. Therefore k-means minimizes the within-
cluster scatter matrix or maximizes the between-cluster scatter  matrix.

The following discussion illustrates the above formalism with a numeri-
cal example. Given the data points
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where the first three rows of X are members of cluster 1 and the last four 
rows are members of cluster 2.

m m1
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and T(1) = 61.42.

The computation for T(2) = 45.24 is left to the reader. Thus T = 106.66.

Next, find W:
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with similar computations yields:W(1) = 4 and W(2) = 2, or W = 6. Finish by 
deriving B: 
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and with comparable computations 
f f f f
m m m m

T( ) ( ) . .2 2 0� � ��� �� �� �� 1 71  Then  
B = (3)(19.14) + (4)(10.71) = 100.27. Note that T = 106.66 = W + B, allow-
ing for rounding errors. Now a Jancey k-means clustering can be completed, 
see problem 4 and 5 in the exercises found at the end of the chapter.

4.5 K-MEANS ALGORITHM

In the k-means approach, once the initial partitions have been estab-
lished, the cluster centroid can be updated after each addition to the clus-
ter (MacQueen�s method), or, only after all the points have been allocated 
(Forgy�s method and Jancey�s method).

At this point a local optimum has been achieved. Unfortunately, there 
is no way to know whether this is also the global optimum. The solution 
can either be accepted, or a new initial partition can be obtained and the 
clusters can be reanalyzed.

4.5.1 MacQueen’s Method

The basic algorithm for MacQueen�s method is as follows:

1. Begin with an initial partition of the data units into clusters (any of the 
methods mentioned previously will work).

2. Take each data unit in sequence and compute the distances to all cluster 
centroids; if the nearest centroid is not that of the data unit�s parent 
 cluster, then reassign the data unit and update the centroids of the 
 losing and gaining clusters.



Partition Clustering  69

3. Repeat step 2 until convergence is achieved; that is, continue until a full 
cycle through the data set fails to cause any changes in cluster member-
ship (Anderberg1, p. 162).

4.5.2 Forgy’s Method

The basic algorithm for Forgy�s method is to:

1. Begin with any desired initial configuration. Go to step 2 if beginning with a 
set of seed points; go to step 3 if beginning with a partition of the data units.

2. Allocate each data unit to the cluster with the nearest seed point. The 
seed points remain fixed for a full cycle through the entire data set.

3. Compute new seed points as the centroids of the clusters of data units.

4. Alternate steps 2 and 3 until the process converges; that is,  continue 
 until no data units change their cluster membership at step 2 
 (Anderberg1, p. 161).

4.5.3 Jancey’s Method

Though Jancey�s method is one of the clustering methods falling under 
the k-means label, it is interesting to note that his method implicitly mini-
mizes a within cluster error function, and as such, may be regarded as at-
tempting to minimize the trace of W (Anderberg)1;( Everitt)4; and (Seber).5 
Jancey�s procedure begins by choosing k mutually exclusive groups and 
computing the group centroids, which he calls class points. In the  present 
investigation, the method attributed to Hartigan was used to develop the 
initial partitions. The next step is to search for objects that should be re-
allocated to another cluster. In Jancey�s method, this is accomplished by 
allocating each data unit to the cluster with the nearest class point. The 
class points remain fixed for a full cycle through the entire data set. At all 
succeeding stages, each new class point is found by reflecting the old class 
point through the new centroid for the cluster. Repeated passes are made 
until no further improvement can be made by moving an object, i.e., the 
process converges. The interested reader should refer to Jancey6 for his 
reason for reflection.

4 Everitt, B. S. (1980). Cluster analysis (2nd ed.). New York: Halsted Press.
5 Seber, G. A. F. (1984). Multivariate observations. New York: John Wiley and Sons.
6 Romesburg, H. C. (1984). Cluster Analysis for Researchers. Belmont, CA: Wadsworth, Inc.
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Consider writing a program for clustering data according to Jancey�s 
k-mean algorithm. This program should allow the user to specify one of 
three initial configuration methods; none of the methods require informa-
tion from the user. The initial configuration techniques employed are to be 
selected in order to demonstrate the benefit of choosing the initial seeds by 
mathematical methods instead of relying on the user to select the seeds. In 
the first method, which is analogous to the user selecting k points from the 
data set, k distinct data points are randomly chosen as initial seeds through 
the use of a random number generator. A multiplicative congruent ran-
dom number generator was implemented. The pseudocode for this random 
number generator is described in Algorithm 1.

1. Choose any number less than nine digits and designate it as XQ, the starting 
value. This seed should be chosen randomly, perhaps by using a table  
of random digits.

2. Multiply this by a designated number, a, a nonnegative number of at least  
five digits.

3. Multiply the product from step 2 by a fraction or decimal number that is 
equal to 1/m, where m is a nonnegative integer equal to 2**b and b is the 
number of bits in a computer word.

4. Choose the decimal portion of the answer from step 3 as a random number  
0 < X < 1.

5. Drop the decimal point from the original number obtained in step 4 and use 
it for the X to be multiplied by a in step 2.

6. Repeat steps 2 through 5 until the desired number of random numbers is 
obtained.

FIGURE 4.6 Algorithm 1: Multiplicative Random Number Generator.

Secondly, all data points are ordered according to the sum of the nu-
merical attributes which describe each point. Then, the ordered data points 
are divided into k groups. The means of these k groups are then calculated 
and serve as the initial seeds. Finally, the SAS FASTCLUS routine gener-
ated the third initial configuration. The SAS FASTCLUS program accepts 
as input parameters the initial seeds computed in the second initial con-
figuration method; it then generates a refined set of seeds. The algorithm 
used by SAS FASTCLUS to calculate the refined initial seeds is contained 
in Algorithm 2.
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1. It accepts as input parameters k seeds which have a large Euclidean distance 
between them. The k seeds cover all regions of the attribute space in which 
the objects are expected to reside.

2. It then forms temporary clusters by sequentially assigning the remaining 
objects to the cluster seed each object is nearest. As objects are assigned, the 
cluster seed is recomputed and made to be equal to the mean of the data 
profiles of the objects that are in the cluster. As a consequence, the cluster 
seed (usually) changes when an object is tentatively assigned to a cluster.

3. When the first iteration is completed, the final set of cluster seeds are taken 
as the k initial seeds to start the second iteration. The process is repeated, 
sequentially assigning the objects to their nearest cluster seed, and updating 
the seeds as the process moves along.

4. After a number of iterations, when the change in the positions of the cluster 
seeds is tolerably small from one iteration to the next, the program termi-
nates. The k cluster seeds from the final iteration serve as the refined seeds.

Source: Romesburg6

FIGURE 4.7 Algorithm 2: SAS FASTCLUS Algorithm for Generating Initial Seeds.

Jancey�s algorithm for clustering the data points is displayed in 
 Algorithm 3. After clustering the data according to Jancey�s algorithm, the 
program should calculate the Corrected Rand Statistic, a statistical index 
measuring the departure of the captured partition from the actual partition.

1. Begin with any desired initial configuration.

2. Allocate each data unit to the cluster with the nearest seed point. The seed 
points remain fixed for a full cycle through the entire data set.

3. Compute new seed points as the centroids of the clusters of the data units.

4. Iterate steps 2 and 3 until the process converges; that is, continue until fewer 
than the tolerable number of data units change their membership at step 2.

Source: Anderberg2

FIGURE 4.8 Algorithm 3: Jancey’s Algorithm for Clustering Data.

The Corrected Rand Statistic is an external measure. External measures 
are usually calculated based on how pairs of points are placed in the actual 
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and captured clusters. There are four possibilities of placement for a pair of 
points. First, the pair is placed in the same cluster in the actual and captured 
partitions. Secondly, the pair is placed in the same cluster in the actual parti-
tion and in different clusters in the captured partition. Alternatively, the pair 
is placed in different clusters in the actual partition and in the same cluster in 
the captured partition. Finally, the pair is placed in different clusters in the 
actual and captured partitions. The first and last cases represent similarity 
between partitioning; the middle two placement schemes represent differ-
ing partitions. Many of the external measuring indices are calculated by sum-
ming up the number of pairs of points which fall into each of the four catego-
ries mentioned previously. Then the actual index is a function of these four 
terms. For example, the Rand Statistic is calculated by summing the first and 
last term; and then dividing this sum by the sum of all the terms. The Cor-
rected Rand values must fall between zero and one. This statistic is one of 
the newest external measures in the cluster analysis field. It is based on the 
Rand Statistic. Hubert and Arabic introduced the Corrected Rand Statistic; 
this statistic corrects the original rand index for chance. The algorithm for 
computation of the Corrected Rand Statistic is contained in Figure 4.9.

1. Calculate the index term which equals the ( )
,
n chooseiji j

2� . Note that i = 1 

to the number of clusters in the actual partition, and j = 1 to the number of 
clusters in the captured partition, n

ij
 = number of data points in cluster i of 

the actual partition and cluster j of the captured partition.

2. Calculate the expected index term. To do this calculate

( ) ( ) [ ]ni nj n
i j

choose choose choose 22 2� ���
�

�
�

 Note that n
i
 = number of data points in cluster i of the actual partition and 

n
j
 = number of data points in cluster j of the captured partition, n = the total 

number of data points clustered.

3. Calculate the maximum index term. To do this calculate

( ) ( )ni nj
i j

choose choose 22 2� ���
�

�
�

4. Calculate the Corrected Rand Statistic which is equal to (Index term – Expected 
Index term) / (Maximum Index term – Expected Index term).

Source: Hubert and Phipps8

FIGURE 4.9 Algorithm 4: Algorithm for Computing the Corrected Rand Statistic.
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4.6 GROUPING CRITERIA

Looking at the matrix relationship mentioned earlier (i.e., W = T + B), 
four possible grouping criteria have been proposed.

 Criteria 1: The first possibility is to minimize the trace W. This is one of 
the three most popular techniques of cluster analysis (Everitt).3

 Criteria 2: Second, minimize the ratio of determinants 
W

T
. This crite-

rion is known as Wilks� lambda statistic.

 Criteria 3: Third, maximize the largest eigenvalue of W. This criterion is 
known as Roy�s largest root criterion.

 Criteria 4: Fourth is to maximize the trace of W�1 B. This criterion is 
known as Hotelling�s trace criterion (Anderberg).1

Each of these methods has its advantages and disadvantages. The major 
problem with minimizing the trace W is that it is transformation dependent. 
This means, that in general, different results will be obtained from apply-
ing the technique to raw data as opposed to standardized data (Everitt).3 A 
second problem with this criterion is that it tends to find spherical clusters 
in the data. This is because the trace does not take into account correlations 
among the variables (Seber).4 The second method, minimize the ratio of 

determinants 
W

T
, assumes that all the clusters in the data have the same 

shape. It also tends to divide the data into approximately equal-sized clus-
ters when the separation is not great. Similar problems can be found for the 
other two criterion see Everitt3 and Seber.4

4.7 BIRCH, A HYBRID METHOD

There is a need for more efficient clustering methods for large  databases. 
Zhang, Ramakrishnan, and Livny7 developed BIRCH, Balanced Iterative 
Reducing and Clustering using Hierarchies, for clustering large numerical 

7  Zhang, T., Ramakrishnan, R., and Livny, M. (1996). An efficient data clustering method for 
very large databases. Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, 103-114.
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databases. The BIRCH method combines the construction of a height-bal-
anced tree with a k-means method applied to the leaves of the tree.

Two major concepts in the BIRCH method are cluster feature vec-
tors and the cluster feature tree.

Definition: a cluster feature vector is a triplet, (CF, LS, SS), main-
tained on a set of data points, {x

1
, x

2
, . . ., x

N
}, where N is the number of 

points, LS =
=� xii

N

1
, and SS =

=� xii

N 2

1
.

Given the following set of points, as a candidate cluster:

Point X Y

1 2 3

2 4 2

3 4 5

4 3 5

5 3 3

6 4 3

Then CF = (6, (20, 22), (70, 81)).

The cluster feature vectors represent the structure of the clusters, while 
the cluster feature tree stores the clustering hierarchy.

Definition: a CF tree is a height-balanced tree which stores the clus-
tering features for a hierarchical clustering with two parameters: B = the 
maximum number of children for each parent node and L = the maximum 
diameter of sub-clusters stored at a leaf node. Each entry in a non-leaf 
node has the form [CF

i
, child

i
], where child

i
 is a pointer. The leaf nodes are 

stored in a doubly linked list, where each entry is a cluster feature vector, 
CF

i
. All leaf nodes are on the same level of the tree.

A template for a CF tree is illustrated in Figure 4.10:
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B = 5, L = 7 CF1

child1 child2

child6 child7 child8 child9 child10
child26 child27 child28 child29 child30

child3 child4 child5

CF2 CF3 CF4 CF5

CF6

prev prev

CF7 CF8 CF9 CF10
CF26 CF27 CF28 CF29 CF30

CF31
CF51 CF52 CF53 CF54 CF55 CF55CF32 CF33 CF34 CF35 next next

FIGURE 4.10 A CF tree.

The BIRCH algorithm is composed of two main phases:

Phase A: construction of a memory resident CF tree for the numerical da-
tabase, and

Phase B: a partitioning algorithm, similar to k-means, is applied to the 
leaves of the CF tree.

The following Phase A pseudocode is for constructing the CF tree:

Input: the database D = {t
1
, t

2
, . . ., t

n
} and T = the maximal diameter for 

subclusters.

Output: K = the number of captured clusters.

For each t
i
 � D do

{find the correct leaf node to insert t
i
 by a search path starting at the 

root node

IF the number of points in the leaf node is � T,

THEN insert t
i
 into the leaf node and update the ancestor CF triples 

using summation

ELSE split the leaf node, placing t
i
 in one of the new leaf nodes, and 

update the ancestor CF triples where necessary.}

Note that insertions are made at the bottom level of the tree and can 
result in splitting nodes in prior levels of the tree, even allowing for the 
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tree�s height to increase by one. Once the initial CF tree is attempted to be 
created, and if there is insufficient memory to construct the CF tree, simply 
restart the construction with a larger value of T. As T increases, the size of 
the constructed CF tree decreases exponentially.

Phase B applies another global clustering approach applied to the leaf 
nodes in the CF tree, by utilizing the double-linked list of leaf nodes for 
navigation. This phase is followed by reclustering all points by placing them 
in the cluster which has the closest centroid, an optional phase.

The advantage that BIRCH has is it only requires a single scan of the 
database. However, additional scans to consider a variety of values for 
T could improve the quality of the resultant CF tree choice. Not only is 
BIRCH applicable for numeric data, but it is also sensitive to the input 
order of the data. BIRCH additionally favors clusters with spherical shape 
and similar sizes.

4.8 SUMMARY

�� Unlike hierarchical clustering methods that capture a tree structure of 
clustering structure, the partition clustering methods obtain a single 
partition of the data. When the computational requirement for the 
construction of a dendrogram is prohibitive, then a partition clustering 
method should be used for the cluster analysis.

�� Choosing the number of representative clusters is the paramount 
problem in partition clustering. The interested reader should refer to 
Dubes.8

�� Partition clustering methods generate clusters either by optimizing an 
objective function on a subset of the objects or over all of the objects.

�� Normally, in a cluster analysis utilizing partition clustering methods, the 
methods are executed multiple times with distinct initial configurations 
or the best configuration derived from all of the executions is adopted as 
the final output clustering.

�� K-means, based upon the squared error criterion, is the most commonly 
used partition clustering method.

8  Dubes, R. C. (1987). How many clusters are best?�An Experiment. Pattern Recognition, 
20:645-663.
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�� The k-means method is sensitive to the selection of the initial partition, 
which can cause the convergence to a local minima of the objective 
function.

�� The standard error for a clustering containing k clusters is:

error = x ci
j

ji

n

j

K j ( ) ,�
�� �� 11

2

where xi
j( )  is the ith pattern belonging to the jth cluster and c

j
 is the  centroid 

of the jth cluster.

�� K-means converges but it finds a local minimum of the objective  function.

�� K-means works only for numerical observations, for categorical and 
mixture observations k-medoids is a clustering method.

�� Fine tuning is required when applied for image processing; mostly 
 because there is no imposed spatial coherency in k-means algorithm.

�� K-means often works as a starting point for sophisticated clustering  
applications.

4.9 EXERCISES

If you have access to clustering software, the following problems should 
be run with it instead of the software found in the Appendices.

1. How many clusters are present in the data? 

x y

1 1

2 2

5 5

4 7

5 7

5 8

4 8

14 7

15 8

19 16

19 17

TABLE 4.7 Data Set.
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 Defend your answer.

2. Using Forgy�s method obtain a partition clustering. Discuss how the 
clustering in problem 1 compares to the captured clustering using 
Forgy�s method.

3. For the problem 1 data set, obtain a partition clustering for each selec-
tion of an initial configuration discussed in section 3.3.

4. Complete the computations for the within-cluster matrix discussed in 
section 3.4.

5. Explain why T = W + B.

6. Complete a k-means clustering by Jancey�s method for the pattern 
matrix in section 3.4.

7. Given the following data set:

Person Weight Height

A 135# 5'2"

B 142# 5'2"

C 175# 6'0"

D 189# 5'10"

TABLE 4.8 Physical Data.

Manually perform a partition clustering on this data given that the 
original set of centroids are C1(138#, 5’3") and C2(182#, 5’4"). Include 
for each iteration the distance matrix, the membership matrix, and 
a graphical display of the iteration step cluster that includes the new 
centroids.

8. Manually compute the corrected Rand statistic for the partition cluster-
ing obtained for problem 1 assuming the actual clusters were {A, B} and 
{C, D}. Interpret your result.

9. Use the Neymann-Scott cluster generator to generate an initial configu-
ration. Redo problems 2 and 5 for this configuration.
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10. Perform a cluster analysis of the data file found in problem 1 using an 
accessible statistical software package including cluster analysis facili-
ties. Compare the clustering with the resultant clustering obtained 
from applying Jancey�s algorithm to the same data file.

11. Splitting and merging of the resulting clusters can be taken as the last 
step in each iteration of the k-means method. A split in a given cluster 
can be taken if the cluster variance is above a prespecified threshold. 
Similarly, two clusters are merged when the distance between their 
centroids is below another prespecified threshold. Redo problem 7 
using this modification. Enforcing this modification to the k-means 
method makes it possible to obtain the optimal partition starting from 
any initial partition, provided proper threshold values are specified 
(Ball, G. H. and Hall, D. J.).9

12. The Neymann-Scott algorithm enables researchers in cluster analy-
sis to perform Monte Carlo studies. A Monte Carlo study involves 
artificial data that is generated through the use of a random number 
generator and the probability distribution of interest. The interested 
reader should study Shannon.10 Consider conducting a Monte Carlo 
evaluation on the optimal initial configuration for the k-means meth-
ods discussed in Section 3.5.

 9  Ball, G. H. and Hall, D. J. (1965). ISODATA, a Novel Method of Data Analysis and Clas-
sification, Technical Report, Stanford Research Institute, California.

10  Shannon, R. (1975). System Simulation The Art and Science. Englewood Cliffs, N. J.: 
Prentice-Hall, Inc.
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13. Consider the following data points:

 

0

2

4

6

8

10

12

0 5 10 15 20 25

Point

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

x y

1

2

3

4

4

4

5

6

7

8

7

6

6

8

9

3

7

6

4

4

3

1

2

3

4

5

6

5

6

7

8

6

7

8

6

10

7

3

4

6

3

2

FIGURE 4.11 Hypothetical Data Set.

Construct a CF tree with B = 3 and L = 2 for the data points.

14. Use k-means to obtain a final BIRCH clustering for the data points in 
problem 13.

15. Implement the BIRCH algorithm in a programming language of 
your choice. Generate the solutions to problems 13 and 14 using your 
 program.



C H A P T E R5
JUDGMENTAL ANALYSIS

In This Chapter

5.1 Introduction

5.2 Judgmental Analysis Algorithm

5.2.1 Capturing R2

5.2.2 Grouping to Optimize Judges� R2

5.2.3 Alternative Method for JAN

5.3 Judgmental Analysis in Research

5.4 Example JAN Study

5.4.1 Statement of Problem

5.4.2 Predictor Variables

5.4.3 Criterion Variables

5.4.4 Questions Asked

5.4.5 Method Used for Organizing Data

5.4.6 Subjects Judged

5.4.7 Judges

5.4.8 Strategy Used for Obtaining Data

5.4.9 Checking the Model

5.4.10 Extract the Equation

5.5 Summary

5.6 Exercises



82  Cluster Analysis and Data Mining

5.1 INTRODUCTION

Bottenberg and Christal1,2 developed an application of the hierarchical 
grouping model that groups criteria in terms of the homogeneity of their 
prediction equations. A specific application of this technique, JAN, was de-
veloped by Christal.3,4 JAN is a technique for capturing and clustering the 
policies of raters or judges. Capturing the policy of a rater (or judge) can be 
defined as the extent to which one is able to predict the behavior or actions 
of that rater from the known characteristics of the stimuli he (she) is being 
required to evaluate. Clustering refers to the grouping of raters relative to 
the homogeneity of their prediction equations as discussed by Christal5 and 
Dudycha.6

The following example will help illustrate the JAN procedure. A 
group of 10 judges are recruited to establish an evaluation policy for a 
new  software development program. Relevant information (i.e., 12 qual-
ity assurance measures) is individually coded for a sample of 175 software 
 assurance departments from several companies. The judges are asked to 
look at each department�s profile and rate their suitability for the new pro-
gram. A judge�s policy can be captured by using the 12 quality assurance 
measures as predictors and the judge�s rating of the 175 profiles as the crite-
rion variable in a 12-predictor multiple regression equation. We are able to 
determine how successfully the regression equation predicts a given judge�s 
policy by the magnitude of R2, the squared multiple correlation coefficient. 
Once a judge�s policy has been captured, with his/her individual regression 
equation, the problem becomes one of reaching a consensus (the clustering 

1  Bottenberg, R. A. & Crystal, R. E. (1961, March). An iterative clustering criteria which 
retains optimum predictive efficiency. (Technical Note WADD - TN - 6 30). Lackland Air 
Force Base, Texas Personnel Laboratory, Wright Air Development Division.

2  Bottenberg, R. A. & Crystal, R. E. (1968). Grouping criteria - a method which retains opti-
mum predictive efficiency. Journal of Experimental Education, 36(4), 28-34.

3  Christal, R. E. (1963, February). JAN: a technique for analyzing individual and group judg-
ment. (Technical Note PRL-TDR 63 - 3), Lackland Air Force Base, Texas 6570th Personnel 
Research Laboratory, Aerospace Medical Division.

4  Christal, R. E. (1968). Selecting a harem - and other applications of the policy capturing 
model. Journal of Experimental Education, 36(4), 35-41.

5  Christal, R. E. (1968). JAN: a technique for analyzing group judgment. Journal of Experi-
mental Education, 36(4), 24-27.

6  Dudycha, A. L. (1970). A Monte-Carlo evaluation of JAN: a technique for capturing and 
clustering rater policies. Organizational Behavior and Human Performance, 5, 501-516.
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phase of JAN). First, a single R2 is computed that gives the overall predic-
tive efficiency obtained when a separate least-squares weighted regression 
equation is used for each judge. In the second and subsequent steps, all  
the equations are compared and the two judges (or equations) showing the 
most agreement (i.e., the smallest drop in the overall R2 value) are combined 
to form a new equation by collapsing variables. This leaves one less  equation 
at successive steps. The drop in R2 indicates the overall loss in predictive 
efficiency that results from reducing the number of equations by one. The 
process continues until all the judges have been combined into one regres-
sion equation. By observing the drop in R2 at each step of the grouping 
process, the number of different policies exhibited by that group of judges 
may be determined. There are a number of different methods for deciding  
upon the appropriate cutoff. Bottenberg and Christal2 proposed an F test 
when the Ns are relatively small. Ward and Hook7 recommended looking 
for a sharp increase in the value-reflecting number, which �indicates that 
much of the classification systems accuracy has been lost by reducing the 
number of groups by one at this stage� (p. 73). Two methods mentioned by 
Adler and Kafry8 included deciding on the number of groups a priori, or 
stopping the process when a predetermined lower bound of R2 has been 
reached.

The previous example highlights a number of positive benefits to the 
JAN approach. First, it identifies the underlying groups. Second, it  provides 
equations expressing the different policies. And third, it allows for a com-
plete analysis of inter-rater agreement. It is not surprising that the use of this 
technique has become widespread since it first appeared in the  journals.

5.2 JUDGMENTAL ANALYSIS ALGORITHM

In this section, definitions of various concepts related to JAN are 
 discussed.

Ipsative JAN refers to the JAN approach in which judges use personal 
knowledge of the capabilities of each profile case to suggest a rank. It is a 
way of quantifying subjective opinions that yields more objective results.

7  Ward, J. H. Jr. & Hook, M. E. (1963). Applications of a hierarchical grouping procedure 
to a problem of grouping profiles. Educational and Psychological Measurement, 23, 69-81.

8  Adler, I. & Kafry, E. (1980). Capturing and clustering judges� policies. Organizational Be-
havior and Human Performance, 23, 384-394.
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The judges are restricted to be knowledgeable or related to the profile 
cases in order to rate each profile case.

The judgmental evaluation procedure is the outcome of a rating  process 
by a judge who has been presented a series of variables on which he (she) 
must base a decision. For example, how does a judge involve effective 
thought processing when presented with a series of variables on which he 
(she) must base a decision?

Normative JAN refers to the JAN approach in which the judges utilize 
the predictor variables to rank each profile case.

A profile score is an instance of a rating for a profile case.

Type A JAN is an analysis in which all the judges give judgments on 
the same subjects with respect to the same criterion variable and predictor 
variables.

Type B JAN is an analysis in which the judges do not judge the same 
subjects (different judges could judge a different number of subjects as 
well) with respect to the same criterion variable and predictor variables.

The judgment analysis technique is useful for identifying the rating pol-
icies existing in a board or committee of judges. With this technique, each 
judge makes a judgmental decision on one common criterion variable on 
which he (she) is given a common predictor set profile on a set of judges to 
determine how many different evaluation policies exist in the group. Next, 
a multiple regression analysis can be made to determine the composition of 
each captured policy.

The JAN procedure consists of two basic stages. In the first stage, a 
least-squares solution of a multiple regression equation is computed for 
each judge, which predicts the criterion decision he (she) has made. It an-
swers the question of how consistent the judge is in his (her) use of specific 
variables in arriving at an overall decision by giving his (her) decision- making 
equation and the R2, the square of the multiple correlation coefficient, 
from his (her) multiple regression analysis. A high R2 indicates that he (she) 
has a policy and was consistent in expressing it through his (her) criterion 
 decisions.

Next, a hierarchical grouping procedure is initiated that allows the 
grouping of individual judges according to some objective function by 
similarity of their decision-making equations in this case. Groupings are 
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 selected that yield the smallest decrease in ability to predict the criterion 
from knowledge of which individual judges are in a particular group (loss 
in R2).

The first step in the grouping procedure reduces the number of equa-
tions by one. The two judges whose decision-making equations are most 
similar are grouped together as a unit and all other judges are left ungrouped. 
From the set of ungrouped judges, the process then selects a judge whose 
decision-making equation is most similar to that of the grouped judges and 
groups him (her) with them as a unit. The number of judges remaining in 
the ungrouped set is reduced by one at each step of the process until all 
judges have been grouped into a single unit. At each step of the grouping 
process, an examination of the loss of predictive efficiency allows the in-
vestigator to identify the number of various judgmental policies that exist.

If a single policy is characteristic of the whole collection of judges, it 
can be determined at the final stage of grouping. If a joint policy does not 
exist, arbitration of the criterion by the whole group may yield a joint policy.

Judgment analysis has been extensively used by the United States Air 
Force to analyze individual and group judgments and to formulate common 
or overall judgmental policies. A large amount of this type of work has been 
done by Ward9 and Bottenberg and Christal.1 Bottenberg and Christal2 
were originally responsible for the mathematical and computer program 
developments in the field.

5.2.1 Capturing R2

Rather than solving the matrix equation developed for least squares 
estimators, the JAN algorithm employs an iterative technique to find the 
b weights. Such an approach is systematic, repetitive, easily programmed, 
and well suited to computer computation.

The Kelley-Salisbury technique is one of these methods. In it, succes-
sive approximations to � in the equation

R �
z
 = V

are found until a satisfactory solution is obtained. V is the vector of validi-
ties, or Pearson correlations between each of the predictor variables and the 

9  Ward, J. H., Jr., (1963). Hierarchical grouping to optimize an objective function. American 
Statistical Association Journal, 58, 236-244.
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dependent variable. R is the intercorrelation matrix of the predictors, the 
matrix of correlations of the independent variables with each other.

The vector �
z
 found by this method is the vector of coefficients in the 

equation

z zY z X
j

p

j ij
=

=
� � .

1

This equation is called the normalized solution of the multiple regres-
sion problem. We can use the facts that

z
Y Y

sY

Y

�

�

�
� � �

 and z
X X

sX
i i

X
i

i

=
�

, for I = 1, 2,..., p,

to find the vector b of weights in this form of the solution:

� � �
�

�Y b b Xj ij
j

p

0
1

.

Consider the following example, taken from a text by Walker and Lev10 
and based on a sample of n = 36 cases. Given the intercorrelation matrix for 
a dependent variable Y and the three predictors X

1
, X

2
, X

3
, we seek the least 

squares multiple linear regression. The correlations of all the variables are 
given in Table 5.1.

Y X
1

X
2

X
3

Y 1.000 0.357 0.620 0.518

X
1

0.357 1.000 0.321 0.477

X
2

0.620 0.321 1.000 0.539

X
3

0.518 0.477 0.539 1.000

TABLE 5.1 Intercorrelation Matrix.

The equation employed in the Kelley-Salisbury technique is this:

 R �
z
 V

1 000 0 321 0 477

0 321 1 000 0 539

0 477 0 539 1 000

. . .

. . .

. . .

�

�

�
�
�

�

�

�
�
�

x
z�

11

2

3

0 357

0 620

0 518

�

�
z

z

�

�

�
�
�

�

�

�
�
�

�

�

�

�
�
�

�

�

�
�
�

.

.

.

.

10 Walker, H. M. & Lev, J. (1953). Statistical Inference. New York: Rinehart and Winston, Inc.
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In general, the equation �
z
 = R�1V has a solution only if all the predic-

tors are independent of one another. The iterative technique that is the 
heart of the Kelley-Salisbury method, however, will find a solution even 
when the predictors are statistically dependent.

We begin by choosing arbitrary values for the vector �
z
 of beta weights. 

We then perform one matrix multiplication, R �
z
 = V

r
, where V

r
 is a vector 

of trial validities. The difference of largest magnitude between elements of 
V and elements of V

r
 is then added to the corresponding trial beta weight in 

the vector �
z
, and then this process is repeated over again.

In our example, we set the weights equal to the validities. Our first 
multiplication is

R �z =
�

�

�
�
�

�

�

�
�

1 000 0 321 0 477

0 321 1 000 0 539

0 477 0 539 1 000

. . .

. . .

. . . ��

�

�

�
�
�

�

�

�
�
�

=
�

�

�
�
�

�

�

�
�
�

=x Vr

0 357

0 620

0 518

0 803

1 014

1 022

.

.

.

.

.

.

,

then

V Vr� �

�

�

�
�
�

�

�

�
�
�

�
�

�

�
�
�

�

�

�
�
�

�

�0 357

0 620

0 518

0 803

1 014

1 022

.

.

.

.

.

.

00 446

0 394

0 504

.

.

.

.�
�

�

�

�
�
�

�

�

�
�
�

The difference of largest magnitude is V
3
 � Vr3

 = �0.504, so this amount is 
added to �z3

.

The vector of approximate weights is now

�z =
�

�

�
�
�

�

�

�
�
�

0 357

0 620

0 014

.

.

.

.

This process is repeated, adjusting one element of �z3
 at each iteration 

until V
r
 converges on V. In our example, this conversion occurs on the 18th 

iteration, as detailed in Table 5.2.
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Approximations to β
z

Vector of Trial Validities

β
1

β
2

β
3

V
1
  

0.357
V

2
  

0.620
V

3
  

0.518

0.357 0.620 0.518 0.803 1.014 1.022

0.357 0.620 0.014 0.563 0.742 0.518

0.151 0.620 0.014 0.357 0.676 0.420

0.151 0.620 0.112 0.403 0.729 0.518

0.151 0.511 0.112 0.368 0.620 0.459

0.151 0.511 0.171 0.397 0.652 0.518

0.111 0.511 0.171 0.357 0.639 0.499

0.111 0.492 0.171 0.350 0.620 0.489

0.111 0.492 0.200 0.364 0.635 0.518

0.111 0.477 0.200 0.360 0.620 0.510

0.111 0.477 0.208 0.363 0.625 0.518

0.105 0.477 0.208 0.357 0.623 0.515

0.105 0.474 0.208 0.356 0.620 0.514

0.105 0.474 0.212 0.358 0.622 0.518

0.105 0.474 0.212 0.358 0.620 0.516

0.105 0.472 0.214 0.359 0.621 0.518

0.103 0.422 0.214 0.3566 0.6204 0.5175

0.103 0.472 0.215 0.3571 0.6209 0.5185

0.103 0.471 0.215 0.3567 0.6199 0.5180
aThe final values of the weights are �

z1
 = 0.103, �

z2
 = 0.471, and �

z3
 = 0.215.

TABLE 5.2 The Iterations of the Kelley-Salisbury Method.

5.2.2 Grouping to Optimize Judges’ R2

Each judge, in JAN, is associated with their individual multiple linear 
regression equation. R2, for this equation, is the judge�s predictive efficien-
cy in making their final judgments for each pattern in the profile. If a judge 
has been predicted to be �extremely low� for their R2 value, then that judge 
should be dropped from the study.

Consider starting JAN with the assumption that all the judges are using 
unique judgmental policies. Then the judges are acting independently of 
one another in making their judgments. Assume that we have three judges, 
each judging a profile matrix with four independent variables. The profile 
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matrix, X, of n = 5 observations or cases is paired one-to-one with the judges 
ratings or rank judgment vector, 

f
Y . In this case, the JAN can be thought of 

as being based upon the following full regression model run:

For each judge, we have: Y
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where y
ij
 is the ith judge�s rating or ranking for the jth independent variable, 

and x
i,j
 is the jth independent variable�s value viewed by the jth judge.

Using each judge�s model, the regression full model, for all judges as a 
singleton cluster would be:

Y

Y

Y
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3

 with the new profile matrix 
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The R2 for this new matrix and vector is the predictive efficiency for 
the clustering of all singleton clusters. On all iterations of the JAN, the R2 
for the new pseudo-judge is determined by replacing the two judges or 
 pseudo-judges which requires building a new judgmental vector and profile 
matrix. This construction is illustrated for placing J

1
and J

2
 in the same cluster:

the vector 
Y

Y

1 2

2

& , where Y
1&2

 is the column vector with 10 rows � Y
1

’ s  

followed by Y
2

’ s, and 
X

X

1 2 10 4

5 4

0

0

& ,

,

$

$ . Note that X
1&2

 is the10 by 4 matrix con-

taining one copy of X in the first five rows followed by X in the second row. 
$0 i j,  is a zero matrix with i rows and j columns.

5.2.3 Alternative Method for JAN

A related methodology for the JAN study in this chapter could be com-
pleted as outlined by Harvill, Lang, & McCord.11 This methodology is called 

11  Harvill, L. M., Lang, F., & McCord, R. S. (2004). Determining Component Weights in 
a Communications Assessment Using Judgmental Policy Capturing. Medical Education 
Online [serial outline], 9:12 available from http://www.med-ed-online.org.
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judgmental policy capturing (JPC) which is used to determine component 
weights for complex assessment components in medical education:

JPC is used to capture policy from individual judges relative to various 
profiles of assessment outcomes and, when averaged, can provide weights 
for the components of the assessment. It is not used to look at an individual 
case or �test item� and is not used to determine a minimum passing score 
or set a standard for a particular assessment instrument as is the case with 
standard setting methods.

The specific steps in the procedure for a single iteration of JPC are:

1. Judges are asked to independently provide overall ratings of the perfor-
mance of examinees on a complex skill assessment often using graphic 
representations or profiles of the scores from those assessments for a 
large number of examinees. The judges� ratings are often couched in 
terms of the competence of the examinees. Repeated ratings of some 
of the same profiles provide a measure of stability of the judgments of 
each individual judge although this is not a mandatory art of the process. 
Overall ratings can also be compared among the various judges to deter-
mine the degree of agreement among the judges but consensus among 
the judges is not a goal of this process.

2. Multiple regression analysis is used to determine appropriate regres-
sion or beta weights for the assessment components using the various 
assessment component scores as the predictor or independent variables 
and the judge�s overall ratings for the assessment profiles as the depen-
dent variable or variable to be predicted for each judge. This is a widely 
used statistical procedure that provides a means for capturing how each 
expert valued each skill component in arriving at his/her global ratings of 
performance.

3. The regression weights from each of the judges can be expressed as 
percentages and, thus, provide a straightforward statement about the 
relative importance of each assessment component in determining  
the overall ratings made by that judge. If the assessment has three 
facets, one judge�s percentage weights for those components might be 
30 percent, 35 percent, and 35 percent, respectively, while a second 
judge�s weights or values for the importance of the three facets in terms 
of overall performance might be 40 percent, 40 percent, and 20 percent, 
respectively. A third expert�s percentage weights might be 35 percent, 
40 percent, and 25 percent, respectively.
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4. The sets of weights provided by the judges are then typically averaged 
to arrive at a composite set of weights for that particular skill assess-
ment. For the example above, the average weight for the facets would 
be 35 percent, 38.33 percent, and 26.67 percent, respectively. This set of 
weights could then be applied to new assessments of that skill to provide 
an overall rating or score for examinee performance. For example, if an 
examinee received percentage scores of 65 percent, 85 percent, and 80 
percent on the three assessment components, the examinee�s overall 
percentage score would be:

(.35 × 65) + (.3833 × 85) + (.2667 × 80) = 76.67 percent.

5. The process can be continued with an additional iteration of the above 
steps after the panel of judges has had some opportunity to see their 
own set of regression weights and those of the other panel members; 
some discussion among the panel members might or might not be 
included.

5.3 JUDGMENTAL ANALYSIS IN RESEARCH

The field of education contains many examples of JAN. The extent to 
which graduate school faculty held a single admissions policy was exam-
ined by Houston12 and also by Williams, Gab, and Lindem13. Roscoe and 
 Houston14 looked at the relevance of the Graduate Record Examination 
(GRE) as an admission standard for doctoral study at Colorado State Col-
lege. There were a number of studies that dealt with teacher effective-
ness. Houston and Bentzen15 looked at teaching effectiveness in culturally 
deprived junior high math classes. Houston and Boulding16 used JAN to 
capture the teacher effectiveness policies of College of Education faculty. 

12  Houston, S. R. (1968). Generating a projected criterion of graduate school success via 
normative analysis. Journal of Experimental, 37, 53-58.

13  Williams, J. D., Gab, D. & Linden, A. (1969). Judgmental analysis for assessing doctoral 
admissions programs. Journal of Experimental Education, 38(2), 92-96.

14  Roscoe, J. T. & Houston, S. R. (1969). The predictive validity of GRE scores for a doctoral 
program in education. Educational and Psychological Measurement, 29, 507-509.

15  Houston, S. R. & Bentzen, M. M. (1969). Teaching effectiveness in culturally deprived 
junior high mathematics classes. Journal of Experimental Education, 38(1), 73-78.

16  Houston, S. R. & Boulding, J. T. (1974). Capturing faculty teaching effectiveness policies 
with judgmental analysis. California Journal of Educational Research, 25, 134-139.
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In a study by  Houston, Crosswhite, and King,17 a modified form of JAN, 
called JAN-B, was used as a means for capturing a group or collective 
teacher effectiveness policy from selected students. In JAN-B, a common 
group is joined together to form one judge. For example, in their study, 
students were asked to rank teachers on nine variables. The students were 
then grouped together and the groups were used as individual judges in 
the JAN analysis. One of the groupings consisted of five judges: freshman, 
sophomore, junior, senior, and graduate students. JAN was also used to 
identify a policy of rated school effectiveness in the experimental League 
of Cooperating Schools project (Houston, Duff, and Roy.)18 Leonard, Gru-
etzemacher, Wegner, and Whittington19 used JAN to evaluate the college 
of education and psychology at a state supported university. The evaluation 
policies of citizens and parents, clergy, lay educators, and religious educa-
tors were the focus of a study by Leonard, Gruetzemacher, Maddox, and 
Stewart.20 Other studies in education that utilized the JAN technique in-
cluded the development of a learning disability construct (Mabee),21 an ed-
ucational decision-making situation in special education (Stock),22 and fac-
ulty policies for granting salary increases (Williams, Mabee, and Brekke).23 
Education was not the only discipline to use the JAN method. Holmes and 
Zedeck24 used JAN to capture the policies involved in assessing paintings 
with respect to beauty. There were also studies that used JAN to identify 

17  Houston, S. R., Crosswhite, C. E., & King, R. S. (1974). The use of judgment analysis in 
capturing student policies of rated teacher effectiveness. Journal of Experimental Educa-
tion, 43(2), 28-34.

18  Houston, S. R., Duff, W. L. Jr., & Roy, M. R. (1972). Judgment analysis as a technique for 
evaluating school effectiveness. Journal of Experimental Education, 40(4), 56-61.

19  Leonard, R. L., Gruetzemacher, R. R., Wegner, W., & Whittington, B. (1980). Judgment 
analysis for evaluating a college. Journal of Experimental Education, 49(1), 38-44.

20  Leonard, R. L., Gruetzemacher, R. R., Maddox, V. A., & Stewart, D. K. (1982). Evaluation 
policy definition by judgment analysis among archdiocesan school constituents. Journal of 
Experimental Education, 50(4), 205-210.

21  Mabee, W. S. (1978). An investigation of the learning disability construct by the JAN tech-
nique. Journal of Experimental Education, 46(4), 19-24.

22  Stock, G. C. (1969). Judgmental analysis for the educational researcher. Unpublished doc-
toral dissertation, University of Northern Colorado, Greeley.

23  Williams, J. D., Mabee, W. S., & Brekke, K. A. (1976). Faculty policies for granting salary 
increases. Journal of Experimental Education, 45(2), 65-69.

24  Holmes, G. P., & Zedeck, S. (1973). Judgment analysis for assessing paintings. Journal of 
Experimental Education, 41(4), 26-30.
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pornographic material (Houston and Houston;25 Houston, Houston, and 
Ohlson).26 Zedeck and Kafry27 used JAN to cluster raters who had similar 
strategies in a study involving nurses.

5.4 EXAMPLE JAN STUDY

Consider the following study, which was generated by a research re-
quest from the College of Business Administration at Omega University. 
The Information Systems Department wanted to find and measure a set of 
criteria that would be descriptive of the doctoral candidate selection pro-
cess by the IS faculty. This set of criteria would be descriptive of the candi-
dates� success in the program. Selective procedures for doctoral candidates 
in IS involve looking at many predictor variables; some of these variables 
are GRE population, GMAT scores, Miller Analogies Test (MAT) scores, 
Strong Vocational Interest Blank (SVIB), incoming GPA, and previous ma-
jor field of study. The MMPI is also required for each incoming doctoral 
candidate. However, in the past, many of the doctoral graduates did not 
take the MMPI. Because of this, the 13 subscales of the MMPI were not 
included in the study. To describe the doctoral candidate selection process 
used by the IS faculty, three questions had to be answered:

�� How many distinct judgmental policies are present among the IS faculty 
with respect to what they consider the important cognitive and affective 
skills of an outstanding graduate student?

�� Which of the affective and cognitive skills being considered for each 
graduate do the faculty deem most important?

�� Which predictor variables used in determining admission to the pro-
gram relate to the captured judgmental policy or policies?

5.4.1 Statement of Problem

At present there seems to be a wide variety of methodologies available 
to capture and analyze judgmental policies where either the investigator is 

25  Houston, J. A., & Houston, S. R. (1974). Identifying pornographic materials with judg-
ment analysis. Journal of Experimental Education, 42(4), 18-26.

26  Houston, J. A., Houston, S. R., & Ohlson, E. L. (1974). On determining pornographic 
material. The Journal of Psychology, 88, 277-287.

27  Zedeck, S., & Kafry, D. (1977). Capturing rater policies for processing evaluation data. 
Organizational Behavior and Human Performance, 18, 269-294.
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looking only at predictor variables alone or there is one criterion variable 
and several predictor variables. Missing in the literature is a methodology 
for capturing and analyzing judgmental policies where the investigator is 
looking at a set of criterion variables and a set of predictor variables si-
multaneously. Therefore, the problem is to attempt to capture and analyze 
judgmental policies of the IS faculty while looking at both a set of criterion 
variables and a set of predictor variables.

5.4.1.1 Purpose

The basic purpose of this study, which is service oriented in nature, is 
to develop a methodology for capturing and analyzing judgmental policies 
where the investigator is looking at a set of criterion variables and a set of pre-
dictors in conjunction with each other. This type of methodology is needed 
so that the technique can be used to a great degree in judgmental research.

The questions answered can be subdivided into two general popula-
tions. The first population of concern pertains to how well the methodology 
answered the questions of the IS research request. These questions are as 
follows:

�� How many different judgmental policies exist within the IS Department 
concerning what constitutes an outstanding IS doctoral graduate?

�� Which of the affective and cognitive skills being considered for each 
graduate do the faculty deem most important?

�� What kinds of information that they now collect are important indicators 
of a graduate�s ability to succeed as an IS employee?

The second population of concern involves interpretation of computer 
outputs. The major questions that can be considered are as follows:

�� What types of judgmental policies are captured?

�� Is it possible to determine whether or not each judge is a �good� judge?

�� How many judgmental policies are captured?

�� What are the most important predictor and criterion variables?

�� What is the relationship between the criteria and predictors of importance?

�� Is the procedure for analyzing a captured policy an intuitive or a 
 statistical process?
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The Criterion Instrument Used to Obtain the Ratings
of the Faculty forthe 50 Doctoral Graduates

with Whom They Were Familiar

Project—Can future success of doctoral candidates be predicted with a high degree of certainty
using only a few predictors?
Directions

On an attached sheet you will find a list of the doctoral graduates from the IS 
Department. As judges (i.e., faculty of the IS Department), please rate the graduates whom
you feel qualified to rate. You will be asked to rank them in nine different categories, plus a
general overall rank. When evaluating the graduates, please rate them in comparison to
the other graduates with whom you are familiar and in terms of what you think constitutes
an outstanding IS graduate.

Please rank the graduates from 1 to 5, where 1 = poor, 2 = below average, 3 = average,
4 = above average, and 5 = outstanding, on the following categories.

Name of Graduate________________ Name of Judge______________________

_____________________________________________________________________

Section 1 (pertains to the graduate while a student in the IS Department).

RANK

____1. Academic success (final GPA, comps, orals, and dissertation)

____2. Verbal ability or verbal articulation

____3. Intellectual ability

____4. Interpersonal relationships—faculty and supervisors

____5. Interpersonal relationships—peers

____6. Interpersonal relationships—to people he is serving (students, inmates, etc.) 

____7. Leadership initiative in getting things done (projects, meetings, etc.)

____8. Personal characteristics (emotionally mature, friendly, enthusiastic)

____9. Improvement of self (personally and professionally)

____10. General overall rank combining all categories above into a single rank from 1 to 5

FIGURE 5.1 Study Criterion Instrument.
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There are a few limitations to this study:

�� The subject to predictor ratio should have been larger.

�� This specific study cannot be generalized beyond the IS Department at 
Omega University.

5.4.2 Predictor Variables

The following hierarchy of predictor variables was used in the study. 
This information was obtained either from the faculty of the IS Depart-
ment or the Omega University Graduate Office. As mentioned earlier, this 
information was used in the selection of IS doctoral students.

The cognitive variables are the following:

 X
2
 = GRE population score in social sciences

 X
3
 = GRE population score in the humanities

 X
4
 = GRE population score in the natural sciences

 X
5
 = GMAT verbal score

 X
6
 = GMAT qualitative score

 X
7
 = GMAT composite score

 X
8
 =  Incoming GPA earned in student�s master�s degree program  

(A = 4.0, B = 3.0, C = 2.0, D = 1.0)

 X
9
 = Miller Analogies Test score

Note: Variables X
2
, X

3
,..., X

9
 are in raw score form.

The affective variables, from Group 5 of the SVIB, are the following:

 X
10

 = Interest score for becoming an IT manager

 X
11

 = Interest score for becoming a database manager

 X
12

 = Interest score for becoming a systems analyst

 X
13

 = Interest score for becoming a programmer

 X
14

 = Interest score for becoming a Website designer

 X
15

 = Interest score for becoming a CIO
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The biographic variables are the following:

 X
16

 = Age when admitted to the IS doctoral program

 X
17

 = 1 if the master�s degree program was in IS or MIS; 0 otherwise

There are eight scores on the previous version of the SVIB Group 5 
section, occupational interest. This inventory has been revised three times 
in the last 10 years and new occupational classifications have been added. 
Because of this, only those occupational populations of interest that are on 
all editions were used in the study. Also, the scores on the same year edition 
were not rescaled. This decision was made after consulting with the direc-
tor of research marketing.

The means, standard deviations, and raw scores for the predictor vari-
ables X

2
, X

3
,..., X

17
 are considered confidential information by the faculty of 

the IS Department. Because of this, they were not included in the study.

5.4.3 Criterion Variables

The following hierarchy of criterion variables was used in the study.

The cognitive variables are the following:

 Y
1
 = Academic success (final GPA, comprehensives, orals, and dissertation)

 Y
2
 = Verbal ability or verbal articulation

 Y
3
 = Intellectual ability

The social or affective variables are the following:

 Y
4
 = Interpersonal relationships with faculty and supervisors

 Y
5
 = Interpersonal relationships with his peers

 Y
6
 =  Interpersonal relationship with the people he is serving (students, 

inmates, patients, etc.)

 Y
7
 = Leadership initiative in getting things done (projects, etc.)

 Y
8
 = Personal characteristics (emotionally mature, friendly, enthusiastic)

 Y
9
 = Improvement of self (personally and professionally)

The composite variable is the following:

 Y
10

 =  General overall rank combining all of the above nine categories 
into a single rank
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Each of the criteria was scored on a scale from 1 to 5 where 1 = poor,  
2 = below average, 3 = average, 4 = above average, and 5 = outstanding.

The criterion instrument included in the faculty questionnaire was devel-
oped by three members of the IS faculty. Considerations for the instrument 
were based on the following question: �If it were my job to hire a PhD with 
a degree in IS work, what characteristics or attributes would I would expect 
him to have?� From this question, the nine criterion variables were generated 
and used in the study. Most of the IS doctorates have graduated in the past 
three years and so consideration was not given to the number of publications, 
employment effectiveness in their present job, and professional affiliations.

The criterion instrument was submitted to the 16 members of the IS 
faculty with the following instructions: Please rate each of the above PhD 
graduates with whom you are familiar on a scale from 1 to 5 where 1 = poor, 
2 = below average, 3 = average, 4 = above average, and 5 = outstanding. 
The basis for comparison should be your conception of what constitutes an 
outstanding PhD graduate in IS.

Notice that this is an ipsative type of JAN ranking. Approximately 500 
ratings were obtained through the distribution of the questionnaire.

5.4.4 Questions Asked

�� How many of the judges adhered strictly to the profile scores when 
ranking the IS doctoral graduates?

�� How many different judgmental policies existed?

�� Which predictor variables, X
2
, X

3
,..., X

17
, were the most effective in redi-

recting the obtained judgmental policy?

5.4.5 Method Used for Organizing Data

The following output data for the normative JAN procedure was pre-
sented and summarized in Tables 5.3 to 5.7:

�� The means and standard deviations for the profile scores and the judgments

�� The correlation matrix for the profile scores

�� The correlation matrix for the judgments

�� The correlations between the judgments and the profile scores

�� The sequential and cumulative R2 drops, the judges combined, and the 
single member systems remaining in each step of the JAN procedure
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The means and standard deviations for the profile scores and judgments 
are listed in Table 5.3. The mean for each of the profile scores was approxi-
mately 3. Because each Y

i
 value, where i = l,..., 9, only takes on values from 

1 to 5, and because the 40 sets of ratings were selected at random, these 

Profile Mean

Standard

Deviation

Y1 = Academic success (final GPA, comps, orals,dissertation) 3.27 1.18

3.15 1.37

Y3 = Intellectual ability 3.20 1.17

Y4 = Interpersonal relationships—faculty and supervisor 3.10 1.14

Y5 = Interpersonal relationships—peers 3.07 1.06

Y6 = Interpersonal relationships—to people he is serving
(students, inmates, etc.)

2.92 1.10

Y7 = Leadership initiative in getting things done (projects,
meetings, etc.)

3.02 1.23

Y8 = Personal characteristics (emotionally mature, friendly,
enthusiastic)

3.27 1.22

Y9 = Improvement of self (personally and professionally) 3.15 1.31

Judgments

Judge 1 3.15 1.64

Judge 2 3.10 2.05

Judge 3 3.07 1.69

Judge 4 3.60 1.50

Judge 5 3.90 1.91

Judge 6 3.57 1.41

Judge 7 3.40 1.56

Judge 8 3.97 1.80

Judge 9 3.40 1.60

Judge 10 3.45 1.82

Judge 11 3.82 1.80

Judge 12 3.47 1.39

Y2 = Verbal ability or verbal articulation

TABLE 5.3 Means and Standard Deviations for the Profile Scores and the Judgments.
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results seem consistent. The standard deviations also seem consistent with 
what should be expected. (Note that 12 judges returned the instrument, as 
discussed later.)

The means for the judgments all lie between 3 and 4. This indicates that 
the judges tended to put more of the 40 sets of ratings in Groups 1 through 
3 rather than in Groups 5 through 7. The standard deviations of the judg-
ments were also consistent with what should be expected.

The correlation matrix for the profile scores, the correlation matrix 
for the judgments, the intercorrelation matrix between the profile scores 
and the judgments, and the initial R2 for each of the judgments are in-
cluded in Tables 5.4 through 5.7, respectively.

Variable 1 2 3 4 5 6 7 8 9

1

2 0.79

3 0.85 0.84

4 0.01 0.07 0.02 0.01

5 0.06 0.08 0.03 0.84

6 0.07 0.37 0.21 0.76 0.75

7 0.42 0.72 0.53 0.39 0.42 0.62

8 0.21 0.35 0.22 0.72 0.70 0.66 0.54

9 0.33 0.54 0.42 0.50 0.51 0.59 0.77 0.75

TABLE 5.4 Correlation Matrix for the Profile Scores.

The correlation matrix for the profile scores, shown in Table 5.4, in-
dicates that the cognitive variables Y

1
, Y

2
, and Y

3
 all correlate highly with 

one another. Variables Y
4
, Y

5
, and Y

6
 correlate highly with one another but 

quite low with variables Y
1
, Y

2
, and Y

3
. Because variables Y

4
, Y

5
, and Y

6
 are 

affective variables, this was to be expected. Variables Y
7
, Y

8
, and Y

9
 are also 

affective variables, but their interpretation is not quite as clear. Y
8
 appears 
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to correlate the highest with Y
4
, Y

5
, Y

6
, and Y

9
. Y

7
 and Y

9
 correlate highly 

with each other but also fairly high with variables Y
1
 through Y

6
 and Y

8
. 

It appears that Y
1
 through Y

3
, Y

4
 through Y

6
, and Y

8
 through Y

9
 should be 

grouped into three separate clusters. A factor analysis was completed on the 
profile scores and confirmed the three clusters.

Variable 1 2 3 4 5 6 7 8 9 10 11 12

1

2 0.90

3 0.92 0.83

4 0.82 0.37 0.73

5 0.92 0.92 0.90 0.79

6 0.87 0.90 0.83 0.73 0.89

7 0.84 0.86 0.86 0.82 0.88 0.85

8 0.85 0.85 0.84 0.71 0.85 0.81 0.86

9 0.84 0.91 0.82 0.72 0.90 0.89 0.87 0.79

10 0.86 0.89 0.85 .80 .87 .80 0.87 .85 0.81

11 0.93 0.91 .89 0.88 0.92 0.85 .91 0.87 0.86 0.92

12 0.92 0.90 0.88 0.85 0.90 0.85 0.88 0.88 0.85 0.91 0.95

TABLE 5.5 Correlation Matrix for the Judgments.

The correlation matrix for the judgments, shown in Table 5.5, indicates 
a high agreement among the judges in the ratings that each gave to the 
40 sets of ratings. This will also be indicated later in the analysis of the JAN 
procedure.

The intercorrelation matrix between the profiles and the judgments, 
shown in Table 5.6, indicates that Judges 4, 7, and 10 have somewhat higher 
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relative correlations with variables Y
1
, Y

2
, and Y

3
 than do the rest of the 

judges when the correlations are examined for each judge over all the pro-
files. Again, this result shows up in the analysis of the JAN procedure.

On the criterion instrument, there were 480 usable sets of ratings ob-
tained that could be used in the study. One of the judges was eliminated 
from the study. From these 480 sets of ratings, 40 sets of ratings were ran-
domly selected. The modified Q-sort instrument with the necessary in-
structions was then distributed to the 13 faculty members of the IS faculty 
and to the 3 past members of the IS faculty. Instruments were returned by 
12 of the 16 faculty members.

Judgments

Variables 1 2 3 4 5 6 7 8 9 10 11 12

1 0.45 0.39 0.97 0.62 0.35 0.31 0.47 0.39 0.33 0.37 0.57 0.54

2 0.58 0.56 0.56 0.71 0.56 0.46 0.65 0.61 0.45 0.74 0.74 0.74

3 0.50 0.40 0.40 0.73 0.43 0.32 0.54 0.46 0.39 0.64 0.62 0.61

P
ro

fi
le

s

4 0.75 0.71 0.71 0.47 0.73 0.81 0.61 0.68 0.75 0.59 0.64 0.64

5 0.69 0.78 0.73 0.43 0.77 0.78 0.64 0.67 0.79 0.59 0.61 0.62

6 0.82 0.85 0.80 0.57 0.83 0.84 0.77 0.81 0.79 0.75 0.75 0.75

7 0.76 0.76 0.74 0.75 0.78 0.67 0.78 0.68 0.68 0.81 0.85 0.82

8 0.72 0.76 0.79 0.60 0.77 0.78 0.75 0.73 0.78 0.66 0.77 0.80

9 0.76 0.75 0.76 0.68 0.79 0.68 0.70 0.65 0.72 0.73 0.82 0.85

TABLE 5.6 Intercorrelation Matrix Between the Profiles and the Judgments.

The initial R2 for each of the judges ranged from 0.9735 to 0.8134. This 
indicates that each judge paid strict attention to the variables upon which 
the ratings were based. Because of the excellent job done by each of the 
judges on the modified Q-sort, they were all included in the study. The 
sequential and cumulative R2 drops, the judges combined, and the single-
member systems remaining in each step of the Type A normative JAN pro-
cedure are listed on Table 5.7.
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Judges RSQ

Judge 1 0.9282

Judge 2 0.9521

Judge 3 0.8708

Judge 4 0.8134

Judge 5 0.9212

Judge 6 0.8860

Judge 7 0.8761

Judge 8 0.8436

Judge 9 0.8896

Judge 10 0.9109

Judge 11 0.9719

Judge 12 0.9735

TABLE 5.7 Initial R2 for Each of the 
Judges.

5.4.6 Subjects Judged

The IS Department had its first doctoral graduate 10 years earlier. 
Since then, not including the previous year�s graduates, 55 individuals have 
received their doctoral degree from the IS Department. Of these 55 gradu-
ates, it was possible to get complete information on the predictor variables 
for 50 of them. These 50 were the individuals used in the study.

5.4.7 Judges

At present, there are 13 faculty members of the IS Department who 
have worked with some or all of the 50 doctoral graduates. There were 
three faculty members on the staff of the IS Department over the 10 years 
who have left for positions in other universities. Because they are familiar 
with many of the graduates being studied, they were included in the study. 
These 16 past or present faculty members were used as judges.

5.4.8 Strategy Used for Obtaining Data

Procedure 1:

Out of the approximately 500 sets of ratings obtained on the criterion 
instrument, 40 were randomly selected.
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Procedure 2:

Each of the 16 members of the IS faculty were asked to do a modified 
Q-sort on the 40 sets of ratings. Each set of ratings was called a profile. They 
were asked to compare the 40 profiles against one another and place them 
in seven groups. Group 7 would represent those profiles they considered the 
best of the group of 40 and Group 1 would represent those profiles they con-
sidered the poorest in the group of 40. Groups 2 through 6 lay on an ordinal 
scale between one and seven. The only restrictions were that each judge 
must place at least one profile in each of the seven groups. Hopefully, this 
forced the 12 judges to think along the whole continuum. The instrument 
and the instructions used for the Q-sort were presented to the IS faculty in a 
training session before they actually conducted this part of the study.

Procedure 3:

After the judges completed the rankings, a Type A JAN was run to de-
termine the number of judgmental policies. The decision as to the number 
of policies existing was based on the following consideration: A judge who 
was unable to identify at least one significant factor is failing to relate any 
predictor variable set to any criterion variable.

Procedure 4:

One judgmental policy was determined and a regression model was 
obtained where the rankings of the 40 profiles scored by each of the judges 
was the criterion Y

11
, and Y

1
,..., Y

9
 were the predictors. The systematic pro-

cedure was used to determine which of the nine criteria the IS faculty con-
sidered most important in an outstanding doctoral graduate. This process 
is visually displayed in the regression flowchart shown in Figure 5.2. If the 
subset of variables removed in the restricted model does not constitute an 
R2 drop from the full model of 0.05 or more, then this subset of variables 
was not considered to make a significant contribution.

Procedure 5:

The average score for each IS doctoral graduate was determined for 
each of the criteria, Y

i
, i = 1, 2,..., 9. This score on each criterion was de-

termined by averaging all the scores the graduate received from those 
judges who rated him. Average scores on each of the criteria along with 
the  predetermined weight for the criteria were used to obtain a predicted 
score, Y

12
, for each of the IS graduates: Y

12
 = b

1
 Y

1
 + b

2
 Y

2
 + ... + b

9
 Y

9
.
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The second main objective of this methodology was to determine which 
of the predictors used for admittance to the IS doctoral program are of the 
greatest importance. Because a judgmental policy was already determined in 
regard to what constitutes an outstanding IS graduate, this was now possible.

Procedure 6:

A regression model was run using the predicted score from Proce-
dure 5 as the criterion, Y

12
, and X

2
, X

3
,..., X

17
 were used as predictors. The 

 systematic procedure that was used to determine which of the predictors 
used for admittance to the IS doctoral program are of greatest importance 
is given in the regression flowchart in Figure 5.3. If the subset of variables 
removed in the restricted model does not constitute an R2 drop from the 

RM-(3)
RSQ =

RM-(2)
RSQ =

RM-(1)
RSQ =

RM-(4-6, 8)
RSQ = 

RM-(7, 9)
RSQ =

RM-(8)
RSQ =

RM-(9)
RSQ =

RM-(7)
RSQ =

RM-(6)
RSQ =

RM-(5)
RSQ =

RM-(4)
RSQ = 

Affective Variables
RSQ =RM-(4-9)

Cognitive Variables

RM-(1-3) RSQ =

Variables 1, 2, 3, … , 9, 12
12, 1-9 means a model using 12 as the criterion and 1-9 as predictors
RM-( ) represents the restricted model formed by dropping variables ( ) out
of the full model

Note:

RM-(12, 1-9)
 Cognitive Variables

1-3
Affective Variables

6-9

RSQ =

FIGURE 5.2 Regression Chart for the Criterion Variables.
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full model of 0.05 or more, then this subset of variables was not considered 
to make a significant contribution.

Cognitive Variables
RM-(2-9)    RSQ =

Biographic Variables
RM-(16, 17)    RSQ =

Affective Variables
RM-(10-15)  RSQ =

RM-(16)
RSQ =

RM-(17)
RSQ =

RM-(6, 7, 8)
RSQ =

RM-(7)
RSQ =

RM-(2, 3, 4, 5, 6, 7, 9)
RSQ =

RM-(6, 7)
RSQ =

RM-(7, 8)
RSQ =

RM-(5, 7)
RSQ =

RM-(9, 7)
RSQ =

RM-(3, 7)
RSQ =

RM-(4, 7)
RSQ =

RM-(2, 7)
RSQ =

RM-(11)
RSQ =

RM-(12)
RSQ =

RM-(10)
RSQ =

RM-(14)
RSSQ =

RM-(13)
RSQ =

RM-(15)
RSQ =

RM-(1, 2-17) RSQ =
Biographic
Variables

16, 17

Cognitive
Variables

2-9

Affective
Variables

10-15

FIGURE 5.3 Regression Chart for the Predictor Variables.

5.4.9 Checking the Model

Checking the model is verifying that the variables of the final model do 
not violate assumptions upon which the model is based. This involves careful 
determination that the variables are correctly distributed and standard errors 
are random, as well as looking at any other stringent variate requirements.

The purpose of checking the model is to make sure that the assump-
tions underlying the statistical tests used have not been violated. In some 
experimental designs, we may reduce the variance of the estimator and in-
crease the information by either reducing the variance (noise) or increasing 
the sample size (volume of the signal).

In practice, the assumptions for a linear model are rarely satisfied. The 
experimenter does not know all of the important variables in a process nor 
does he know the true functional relationships. Therefore, the function 
chosen to fit the true relation is only an approximation, and the variables 
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included in the experiment form only a subset of the total. The random er-
ror is thus a composite of error caused by the failure to include all of the im-
portant process variables as well as the error in approximating the function.

To determine the number of judgmental policies present, the fac-
tors previously mentioned were used. Because the original R2 drop is only 
0.0729, this indicates that one judgmental policy provided does not exhibit 
a large R2 drop from one grouping to the next. Further examination of the 
R2 drop from one grouping to the next, as shown in Table 5.8, indicates a 
linear trend from one stage to the next. On the basis of this evidence, it was 
 decided that one judgmental policy existed for the 12 judges. Because of 

Methodology for Criterion = 11

Stages Judges R2 Drop in R2

Collective  
Drop in R2

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 0.9084

2 (3, 9), 1, 2, 4, 6, 7, 8, 9, 10, 11, 12 0.9065 0.0019

3 (3, 5), (6, 9), 1, 2, 4, 7, 8, 10,  
11, 12

0.9041 0.0024 0.0043

4 (3, 5), (6, 9), (11, 12), 1, 2, 4, 7, 
8, 10

0.9013 0.0028 0.0071

5 (3, 5), (6, 9), (7, 10), (11, 12), 1, 
2, 4, 8

0.8974 0.0038 0.0109

6 (1, 2), (3, 5), (6, 9), (7, 10),  
(11, 12), 4, 8

0.8930 0.0044 0.0154

7 (1, 2), (3, 5, 8), (6, 9), (7, 10),  
(11, 12), 4

0.8884 0.0046 0.0199

8 (1, 2), (3, 5, 8), (6, 9), (4, 7, 10), 
(11, 12)

0.8831 0.0053 0.0253

9 (1, 2), (3, 5, 8, 6, 9), (4, 7, 10), 
(11, 12)

0.8771 0.0060 0.0313

10 (1, 2), (3, 5, 8, 6, 9, 11, 12), 
(4, 7, 10)

0.8684 0.0087 0.0400

11 (1, 2, 3, 5, 8, 6, 9, 11, 12),  
(4, 7, 10)

0.8565 0.0119 0.0519

12 (1, 2, 3, 5, 8, 6, 9, 11, 12, 4,  
7, 10)

0.8533 0.0210 0.0729

TABLE 5.8 Stages of the JAN Procedure for the Judges.
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this, it was not necessary for the IS faculty to meet and arbitrate a single 
policy.

A point of interest that was mentioned previously is again apparent 
when one examines stages 11 and 12. Judges 4, 7, and 10 are grouped to-
gether in stage 11 and when combined with the other nine judges in stage 
12, we have the largest R2 drop. Although this drop was not large enough 
to warrant two judgmental policies, it was consistent with the results found 
earlier in the examination of previous tables.

A regression model Y
11

 on Y
1
, Y

2
,..., Y

9
 was completed to determine 

what the nine criteria judges deemed most important if they were to hire 
a PhD with a degree in IS. Here we were trying to determine what the 
faculty considered the highest priority of the nine criteria they considered 
 important for an outstanding doctoral graduate to possess. The schematic 
for the flowchart was developed by an examination of the correlations be-
tween the criteria, Y

1
, Y

2
,..., Y

9
, and factor analysis.

5.4.10 Extract the Equation

Extracting the equation derives the formula that explains the change in 
the dependent variable. This formula can be used to predict future values 
of the dependent variable or to analyze the sources of variation.

In a predictive regression study, the last step is to extract the equation 
for the purpose of predicting future and current values of the dependent 
variable.

Type A normative JAN analysis was completed to determine the num-
ber of judgmental policies that existed among the IS faculty. Only one judg-
mental policy existed and arbitration among the judges was not necessary. 
After this, two regression analyses were made to determine the important 
criterion and/or predictors as related to the judgmental policy of the IS fac-
ulty. A complete discussion of the entire process follows.

The first step in the process was to determine the average score for 
each IS graduate on each of the criteria, Y

i
, i = l, 2,..., 9. This score was 

determined for each of the criteria by averaging all the scores a gradu-
ate received from those judges who rated him on the criterion instrument 
 previously discussed. From the previous regression run of Y

11
 on Y

1
, Y

2
,..., 

Y
9
, the weights assigned to each of the predictor variables, Y

1
, Y

2
,..., Y

9
, can 

be used to develop a prediction equation. (These weights were based on the 
single judgmental policy that existed for the IS department.)These aver-
age scores on each of the criteria along with the predetermined weight for  
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the criteria were used to obtain a predicted score Y
12

 for each of the IS 
graduates. The predictive equation used was the following:

Y
12

 =  0.3119Y
1
 + 0.1243Y

2
 + 0.0000Y

3
 + 0.2621Y

4
 + 0.3292Y

5
 + 0.3910Y

6
  

+ 0.2006Y
7
 + 0.1200Y

8
 + 0.1406Y

9
 � 2.4473.

To determine the number of different policies existing among the IS 
faculty with regard to which characteristics they deemed most desirable in 
an IS doctoral graduate, a Type A normative JAN was completed on the data 
gathered from the 12 judges. The predictor variables used were the nine 
criterion variables listed in Section 4.4.3, namely Y

1
, Y

2
,..., Y

9
. The criterion 

variable Y
11

 refers to the group in which each set of ratings was placed. The 
range of Y

11
 went from 1 to 7. Group 7 represented those sets of ratings 

each judge considered to be the most favorable in the 40 sets of ratings, 
and Group 1 represented those sets of ratings that each judge  considered 
least favorable. Groups 2 through 6 lay in the continuum between the two 
extremes.

The regression flowchart in Figure 5.4 indicates, with respect to the 
existing judgmental policy of the 12 judges, that the affective variables, Y

4
, 

Cognitive Variables
RM-(1-3)    RSQ = .7508

Affective Variables
RM-(4-9)      RSQ = .3692

RM-(3)
RSQ = .8265

RM-(2)
RSQ = .8244

RM-(1)
RSQ = .8166

RM-(4-6, 8)
RSQ = .6305 

RM-(7, 9)
RSQ = .8113

RM-(8)
RSQ = .8233

RM-(9)
RSQ = .8240

RM-(7)
RSQ = .8294

RM-(6)
RSQ = .8146

RM-(5)
RSQ = .8166

RM-(4)
RSQ = .8210

Note: Variables 1, 2, 3, … , 9, 12
 12, 1-9 means a model using 12 as the criterion and 1-9 as predictors
 RM-( ) represents the restricted model formed by dropping variables ( ) out of the full model

Cognitive Variables
1-3

RM-(12, 1-9) RSQ = .8254

6-9
Affective Variables

FIGURE 5.4 Final Regression Chart for the Criterion Variables.
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Y
5
,..., Y

9
, are more important than the cognitive variables, Y

1
, Y

2
, and Y

3
. Of 

the affective variables, Y
4
, Y

5
, Y

6
, and Y

8
 played the biggest part in determin-

ing those doctoral candidates that the IS faculty considered outstanding or 
whom they would hire.

Next, a regression model was completed using the predicted score Y
12

 
as the criterion and the variables X

2
, X

3
,..., X

17
, which are the variables used 

to determine admittance to the program, as predictors. The regression 
flowchart in Figure 5.4 was developed through a factor analysis of the cor-
relation matrix of predictors X

2
, X

3
,..., X

17
. The correlation matrix is listed in 

Appendix B. The number of factors and the factor loadings suggested the 
grouping of subsets of variables as indicated on the flowchart. Variable X

7
 

was dropped from both of the cognitive subsets and individually because it 
loaded on both of these factors. In Figure 5.5, Y

12
 is denoted by variable 1.

An examination of the flowchart reveals that variables X
2
, X

3
, X

4
, X

5
, and 

X
9
 when considered as a group have the greatest importance in determin-

ing admittance to the IS doctoral program based on the judgmental policy 
of the IS faculty as a single group. It should be noted that because of the 

Affective Variables
RM-(10-15)  RSQ = .3656

Cognitive Variables
RM-(2-9)    RSQ = .2390

Biographic Variables
RM-(16, 17)    RSQ = .2582

RM-(16)
RSQ = .2713

RM-(17)
RSQ = .3671

RM-(6, 7, 8)
RSQ = .3652

RM-(7)
RSQ = .3656

RM-(6, 7)
RSQ = .3653

RM-(7, 8)
RSQ = .3656

RM-(5, 7)
RSQ = .3354

RM-(9, 7)
RSQ = .3359

RM-(3, 7)
RSQ = .3533

RM-(4, 7)
RSQ = .3614

RM-(11)
RSQ = .3563

RM-(12)
RSQ = .3608

RM-(10)
RSQ = .3540

RM-(14)
RSQ = .3268

RM-(13)
RSQ = .3692

RM-(15)
RSQ = .3582

Criterion = 12
One System 

Judges
1,2, …  ,12

RM-(2, 3, 4, 5, 6, 7, 9)
RSQ = .2493

RM-(2, 7)
RSQ = .3652

RM-(1, 2-17) RSQ = .3688 

Cognitive
Variables

2-9

Affective
Variables

10-15

Biographic
Variables

16, 17

FIGURE 5.5 Final Regression Chart for the Predictor Variables.
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multi-collinearities existing between these variables, there is virtually no R2 
drop at all when they are dropped out individually. The only other variable 
that gives a large drop in R2 is variable X

16
.

By using the methodology outline in the previous steps, the following 
results were obtained:

 First, one judgmental policy existed, without arbitration, with regard to 
what constitutes an outstanding graduate.

 Second, with regard to this policy, the IS faculty considered the affective 
variables more important than the cognitive variables. Of these affective 
variables, Y

4
, Y

5
, Y

6
, and Y

8
 were the most important.

 Y
4
 = Interpersonal relationships�faculty and supervisors

 Y
5
 = Interpersonal relationships�peers

 Y
6
 =  Interpersonal relationships�with people he is serving (students, 

inmates, patients, etc.)

 Y
8
 = Personal characteristics (emotionally mature, friendly, enthusiastic)

 Third, with regard to the judgmental policy of the IS faculty, variables 
X

2
, X

3
, X

4
, X

5
, X

9
, and X

16
 are the most important in determining admit-

tance to the IS doctoral program.

 X
2
 = GRE population score in social sciences

 X
3
 = GRE population score in humanities

 X
4
 = GRE population score in natural sciences

 X
5
 = GMAT verbal score

 X
9
 = Miller Analogies Test score

 X
16

 = Age when admitted to the IS doctoral program

The R2 value of 0.3688 for the full model is somewhat lower than 
expected. Possibly this is a result of the fact that the predictors, X

2
,  

X
3
,..., X

17
 are either cognitive or interest variables and do not relate to the 

 affective criterion variables, Y
4
, Y

5
, Y

6
, and Y

8
 that the faculty deemed most 

 important.
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5.5 SUMMARY

The advantages of using JAN are numerous. If the number of distinct 
clusters, or policy groups, is not known in advance, which they normally 
wouldn�t be, then multiple runs would also have to be run with multiple 
cluster levels. There are a number of options available for deciding on 
the correct number of clusters with JAN, use the F, or choose an R2 drop 
level. The conclusions are obvious, with its high overall Jaccard mean 
across all conditions, JAN performs well in the task for which it was de-
veloped. And, by using a larger number of variables, ten or more, with 
a higher profile ratio, ten- or twenty-to-one, JAN�s capture rate quickly 
increases.

The need to make only one run as opposed to multiple runs can lead to 
significant savings in both time and money. Not having to know in advance 
the actual number of distinct policy groups takes the guess work out of 
the process, thereby reducing the number of runs even further. Finally the 
program is easy to use and the output is easy to understand. The benefits 
of using the JAN technique in developing an objective decision policy are 
great. The process takes the individual raters subjectiveness into account 
and then develops a consensus policy which can be used to objectively score 
applicants on the criterion of interest. If used correctly, JAN is a very pow-
erful tool.

5.6 EXERCISES

1. In a study of subscribers to two computing journals, a regression analy-
sis was based on the data file to predict the value of the dependent 
 variable TYPE (1 = major journal of the field, 0 = proceedings of na-
tional  meeting) from the predictors ORGAN (professional organization 
affiliation), EDUC (degree held), INCOME (total household income), 
and INTEREST (research interests). The data file contained the val-
ues of these five variables for 225 individuals, and the partial chart in 
 Figure 5.6 summarizes the results.
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Full Model

(EDUC, INCOME, INTEREST) TYPE
R2 = .45190

Drop in R2 = ————

(ORGAN, INCOME, INTEREST) TYPE
R2 = .24678

Drop in R2 = ————

(ORGAN, EDUC, INCOME) TYPE
R2 = .12980

Drop in R2 = ————

(ORGAN, EDUC, INTEREST) TYPE
R2 = .45103

Drop in R2 = ————

(ORGAN, INCOME) TYPE
R2 = .07006

Drop in R2 = ————

(ORGAN, EDUC, INCOME, INTEREST) TYPE
R2 = .45410

RM1:      (-ORGAN) RM2:      (-EDUC, INTEREST)

RM4:      (-EDUC) RM5:      (-INTEREST)

RM3:      (-INCOME)

FIGURE 5.6 Hypothetical Regression Analysis.

The partial printout in Table 5.9 corresponds to the full regression model.

Multr 0.67387 Anova DF F

Rsquare 0.45410 Regression 2 23.09671

Adjrsq 0.45308 Residual 222 Sign

Sterr 0.79004 .002

TABLE 5.9 ANOVA Regression Table.

 a.  Is the full model a �good� model from which to develop the regres-
sion equation? Why or why not?

 b.  Which predictors are significant in predicting TYPE? Which should 
be included in the final regression equation? Why?

2. The intercorrelation matrix in Table 5.10 relates overhead cost in a fac-
tory (Y) to units produced (X

1
), direct labor cost (X

2
), weight of output 

(X
3
), and research and development costs (X

4
).

Y X
1

X
2

X
3

X
4

Y 1.000 0.562 0.401 0.197 0.465

X
1

0.562 1.000 0.396 0.215 0.583

X
2

0.401 0.396 1.000 0.345 0.546

X
3

0.197 0.583 0.546 1.000 0.365

X
4

0.465 0.583 0.546 0.365 1.000

TABLE 5.10 Hypothetical Inter-correlation Matrix.
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 a.  Write out the equation R �
z
 = V.

 b.  Find the normalized regression equation Z zY i X

i
i

=
=
��

1

4

 by the 
 iterative Kelley-Salisbury technique.

 c.  Find and interpret the value of R2.

3. To aid in the selection of salesmen, the Jones Corporation administers 
two fifteen-minute tests. The first test is an achievement test that is 
designed to measure knowledge of leisure-time activities and current 
events. The second test gives a measure of the applicant�s aggressive-
ness. The applicant is asked if he graduated from college; one (1) means 
that the applicant has graduated from college and zero (0) means that 
he/she has not.

Five Jones Corporation executives were given three profile scores 
for each of ten applicants. The executives were asked to rank the ap-
plicants from first choice (assigned number one) to last choice (assigned 
number ten). Table 5.11 shows the profile scores and the corresponding 
ranks.

ID

Profile Scores Judgments

Test I Test II College Judge 1 Judge 2 Judge 3 Judge 4 Judge 5

1 33 16 1  3  3  3  2  1

2 57 17 0  6  1  2  5  2

3 47 12 1  4  2  1  1  4

4 54 12 0  7  9 10 10  7

5 41 12 1  5 10  9  9 10

6 57 15 1  1  5  5  3  3

7 49 16 0  8  4  4  6  6

8 45 15 0  9  6  6  7  8

9 54 14 1  2  8  8  4  5

10 41 15 0 10  7  7  8  9

TABLE 5.11 Profile and Judgmental Scores.

Perform a JAN analysis to capture the optimal clustering of judges 
and then determine what each cluster of judges has for their judgmental 
policy. This analysis can be done either manually or through an imple-
mentation of JAN found in Appendix E.
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 4. Apply the JPC algorithm to the data in Table 5.2.

 5. Both JAN and JPC are referred to as judgmental policy capturing 
methods. What is the difference between �policy capturing� and 
 �judgment analysis�?

 6. Try to replicate the JAN study in this chapter for a comparable appli-
cation within an accessible organization. Additionally. Apply the JPC 
methodology recommended by Harvill, Lang, and McCord.

 7. Using the data file in Problem 3, perform a Jancey clustering on the 
judges R2 values. Are the final results comparable to the JAN results?

 8. Is JAN an optimization method? Defend your answer.

 9. What impact would the similarity between the policies have in a  
JAN study?

10. What are some of the factors that would impact JAN�s ability  
to cluster?

11. Design a Monte Carlo study to validate the JAN method. Consider 
increasing the number of predictor variables, the number of cases  
to a profile, and the number of actual or expectant policies.

12. Design and implement JAN studies for the following: rating candi-
dates applying for membership in an organization, rating TV shows for 
promotion in the job environment, etc. Let your imagination run wild 
and have fun.



C H A P T E R6
FUZZY CLUSTERING 
MODELS AND 
APPLICATIONS

6.1 INTRODUCTION

Fuzzy logic provides a means whereby imprecise or ambiguous data 
can be modeled. In general, humans do not think in terms of crisp numeri-
cal values such as, �The book is located 6.2 inches from the back, 2.7 inches 
from the left, on the third shelf from the base of the bookcase.� This would 
probably be expressed more in terms such as, �The book is at the front 
left of the third shelf from the bottom.� Fuzzy logic, like humans, allows 
for expression in linguistic terms instead of numeric values. Fuzzy systems 
map input variables to output variables by using linguistic rules instead of 
mathematical formulae. These concepts of fuzzy logic can then be applied 
to clustering methods.

In This Chapter

6.1 Introduction

6.2 The Membership Function

6.3 Initial Con�guration

6.4 Merging of Clusters

6.5 Fundamentals of Fuzzy Clustering

6.6 Fuzzy C-Means Clustering

6.7 Induced Fuzziness

6.8 Summary

6.9 Exercises
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In crisp logic, a value either has full membership or no membership, 
but in fuzzy logic, a value can have partial membership in different term 
sets. For example, take the concept of cold. How do we define a tempera-
ture that is cold? Few people could agree on one temperature that could be 
set as a threshold such that all temperatures below that would be cold. This 
would be an attempt at applying a crisp set to an ambiguous and imprecise 
problem.

Zadeh1 defined fuzzy set as follows: A fuzzy set, A, on a universe of dis-
course, U, is characterized by a membership function µ

A
(x) that takes values 

in the interval [0,1]. Various fuzzy sets can be used to define an attribute, 
such as low, medium, or high. An attribute with a certain value can also be a 
member of more than one set, such as 0.6 membership in term set low and 
0.4 membership in term set medium, based on the output of the member-
ship functions.

Fuzzy rules are used to map inputs to outputs by using these linguistic 
labels. Combined, fuzzy rules, input, and output form a fuzzy influence 
system. There are two basic classifications of fuzzy systems: the Mamdani 
model and the Sugeno model. An example of the Mamdani model would be 
a rule such as:

If x
i
 is low and x

2
 is high then y

i
 is B.

In the Mamdani model, the emphasis is on using linguistic terms to 
describe the rule. In the Sugeno model, the output is obtained as a linear 
combination of the fuzzy inputs (Mitra and Hayashi).2

All of the clustering methods presented so far generate partitions, called 
hard clusterings. A partition has disjoint clusters, therefore, each pattern is 
a member of only one cluster. Fuzzy clusterings allow for a pattern to be-
long to more than one cluster, which is not a partition.

1  Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
2  Mitra, S. & Hayashi, Y. (2000). Neuro-Fuzzy Rule Generation: Survey in Soft Computing 

Framework. IEEE Transactions on Neural Networks, 11(3), 748-768.
3  Jain, A. K., Murty, M. N., & Flynn, P. J. (1996). Data Clustering: A Review. [based on the 

chapter �Image Segmentation Using Clustering� in Advances in Image Understanding: A 
Festschrift for Aerial Rosenfeld (Bowyer, K. & Ahuja, N., eds.) (c) Computer Society Press.
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Jain, Murty, and Flynn3 provide the following fuzzy clustering  algorithm:

(1)  Select an initial fuzzy partition of the N objects into K clusters by selecting the N 
× K membership matrix U. An element µ

ij
 of this matrix represents the grade of 

membership of object x
i
 in cluster c

j
. Typically, µ

ij
 [0,1].

(2)  Using U, find the value of a fuzzy criterion function, e.g., a weighted squared 
error criterion function, associated with the corresponding partition. One 
possible fuzzy criterion function is

E X U x cij i kk

K

i

N2

11

2

, ,� � � �
�� �� �

where c xk ik ii

N
= �

�� �
1

 and � �

��
�

�

�
ik

ik

iki

N

1

 is the kth fuzzy cluster center.

Reassign patterns to clusters to reduce this criterion function value and 
recompute U.

(3) Repeat step 2 until entries in U do not change significantly.

FIGURE 6.1 Fuzzy Clustering Algorithm.

Consider the set of points A = {(2,3), (3,2), (1,4), (3,3), (5,3)} and B = 
{(6,3), (7,2), (7,4), (8,3), (7,3)}. Additionally, assume the use of the Euclid-
ean distance similarity measure, then potential neighborhoods for A and B 
could be disjoint as illustrated in Figure 6.2.

0
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4
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0 2 4 6 8 10
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B

FIGURE 6.2 Traditional Non-fuzzy Neighborhoods.

Consider a different situation where A has a larger radius, as illustrated 
in Figure 6.3. Then the neighborhoods overlap.
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FIGURE 6.3 Fuzzy Neighborhoods.

In this case, (5,3) belongs to cluster A and cluster B. Because (5,3) is 
closer to the center of B, a radius approximately of 1, then (5,3) is to the 
center of A, a radius of approximately 3, we could define (5,3)�s grade of 
membership of A to be 0.33 and (5,3)�s grade of membership in B as 0.67. 
Larger membership values indicate higher confidence in the assignment of 
the pattern to the cluster.

In order to assign grade of memberships to every point, the points need 
to be labeled first.

Label Point

1 2 3

2 3 2

3 1 4

4 3 3

5 5 3

6 6 3

7 7 2

8 7 4

9 8 3

10 7 3

TABLE 6.1 Labeled Points in Euclidean Space.

Upon studying Table 6.1 the investigator might represent the fuzzy 
clusters Figure 6.4 using the grade of memberships as ordered pairs (pat-
tern id, grade of membership in the fuzzy cluster being defined).
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FIGURE 6.4 Labeled Points Fuzzy Neighborhoods.

Then the fuzzy clusters are A = {(3,0.05), (1,0.3), (4,0.3), (2,0.3), 
(5,0.05)} and B = {(8,0.2), (5,0.025), (6,0.3), (10,0.3), (9,0.025), (7,0.15)}. 
Because the grade of membership literally means �the degree of belong-
ing to a specific cluster,� then the sum of the grades of membership for all 
patterns in the cluster must equal one. Note that grade of membership is 
not a probability. Probability requires that a pattern belongs to only one 
cluster while grade of membership allows the pattern to belong to several 
or all clusters simultaneously. Again the grade of memberships in a cluster 
for this example were based on a ranking of the distance of the points from 
the center of the cluster.

Application of fuzzy set theory to clustering was introduced by  Ruspini.4 
The interested reader should to consult Bezdek5 and Zadeh1 for material on 
fuzzy clustering. A fuzzy modification of the K means method called the 
fuzzy c-means (FCM) algorithm is by Bezdek.5

As one would suspect, the design of membership functions is the most 
important problem in fuzzy clustering; different choices include those 
based on similarity decomposition (Bezdek)5 and centroids of clusters. A 
generalization of the FCM algorithm was proposed by Bezdek5 through 
a family of objective functions. A fuzzy c-shell algorithm and an adaptive 
variant for detecting circular and elliptical boundaries was presented in 
Dave.6

4 Ruspini, E. H. (1969). A new approach to clustering. Information and Control, 15, 22-32.
5  Bezdek, J. C. (1981). Recognition with Fuzzy Objective Function Algorithms. New York: 

Plenum Press.
6  Dave, R. N. (1992). Generalized fuzzy C-schells clustering and detection of circular and 

elliptic boundaries. Pattern Recognition, 25, 713-722.
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6.2 THE MEMBERSHIP FUNCTION

The primary step for fuzzy clustering is to define a membership func-
tion based on similarity decompositions. One approach is presented in 
Backer.7 Start with a given a set of patterns, {x

1
, x

2
,�, x

n
},  that are initially 

partitioned into clusters, {C
1
, C

2
,�, C

K
}. Assume that n

i
 is the number of 

patterns in C
i
. Let δ(x,C

i
) be the similarity between the pattern x and the 

cluster C
i
. The cluster membership function is then defined as:

f x P x C P x CC i i ik

K

ii
( ) ( , ) ( , )=

=�� �
1

,

where P n ni i= . Then (1) f xCk
( ) � 0  and (2) f xCk

K

i
( ) =

=� 1
1

, for all 

 patterns. If δ(x,C
i
) is a dissimilarity measure, like the Euclidean distance 

measure, then smaller, not larger, values of membership indicate higher 
confidence in the assignment of the pattern to the cluster.

For the clusters A and B in Figure 6.4, the current centroids are the 
following:

centroid for A 2 8 3= = � �
� � � � � � � ��

��
�
��

2 3 1 3 5

5

3 2 4 3 3

5
, . ,  and centroid 

for B 6 67 2 83= � �
� � � � � � � � � ��

��
�
�� =

5 6 7 7 8 7

6

3 3 2 4 3 2

6
, . , . .

Note that δ(x,C
i
) is the Euclidean distance measure, not a similarity mea-

sure. One way to transform the Euclidean distance measure is to let δ(x,C
i
) 

be the reciprocal of the Euclidean distance measure. Next, the grade 
membership value is found for every pattern and cluster  combination.

Cluster A:

δ(1,A) = 1 2 8 2 3 32 2( . ) ( )� � �  = 1/0.2 = 5; 

δ(5,B) = 1 6 67 5 2 83 32 2( . ) ( . )� � �   = 1/1.68 = 0.60

δ(2,A) = 1 2 8 3 3 22 2( . ) ( )� � �  = 0.98; 

δ(6,B) = 1 6 67 6 2 83 32 2( . ) ( . )� � �   = 1.44

δ(3,A) = 1 2 8 1 3 42 2( . ) ( )� � �  = 0.98; 

δ(7,B) = 1 6 67 7 2 83 22 2( . ) ( . )� � �  = 1.12

7  Backer, E. (1978). Cluster Analysis by Optimal Decomposition of Induced Fuzzy Sets. 
Delft, The Netherlands: Delft University Press.
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δ(4,A) = 1 2 8 3 3 32 2( . ) ( )� � �  = 0.98; 

δ(8,B) = 1 6 67 7 2 83 42 2( . ) ( . )� � �  = 0.82

δ(5,A) = 1 2 8 5 3 32 2( . ) ( )� � �  = 0.45; 

δ(9,B) = 1 6 67 8 2 83 32 2( . ) ( . )� � �  = 0.75

δ(10,B) = 1 6 67 3 2 83 32 2( . ) ( . )� � �  = 0.27

and 

δ(1,B) = 1 6 67 2 2 83 32 2( . ) ( . )� � �  = 0.21;

δ(5,A) = 1 2 8 5 3 32 2( . ) ( )� � �  = 0.46

δ(2,B) = 1 6 67 3 2 83 22 2( . ) ( . )� � �  = 0.27; 

δ(6,A) = 1 2 8 6 3 32 2( . ) ( )� � �  = 0.31

δ(3,B) = 1 6 67 1 2 83 42 2( . ) ( . )� � �  = 0.17; 

δ(7,A) = 1 2 8 7 3 22 2( . ) ( )� � �  = 0.23

δ(4,B) = 1 6 67 3 2 83 32 2( . ) ( . )� � �  = 0.27; 

δ(8,A) = 1 2 8 7 3 42 2( . ) ( )� � �  = 0.30

δ(5,B) = 1 6 67 5 2 83 32 2( . ) ( . )� � �  = 0.60; 

δ(9,A) = 1 2 8 8 3 32 2( . ) ( )� � �  = 0.19

δ(10,A) = 1 2 8 3 3 32 2( . ) ( )� � �  = 5

then PA =
5

10
 = 0.5 and PB =

6

10
 = 0.6 and

f
P A

P A P BA
A

A B

( )
,

, ,

( . )( )

[( . )( ) .
1

1

1 1

0 5 5

0 5 5 0 6
=

�� �
�

�

�

� �

( )

( ) ( ) ( ))( ). ]
.

21
0 17�

f
P A

P A P BA
A

A B

( )
,

, ( , )

( . )( . )

[( . )( . )
2

2

2 2

0 5 0 98

0 5 0 98
=

�� �
�

�

�

� �

( )

( ) (( )0 6 0 21
0 62

. ( . )]
.�

f
P A

P A P BA
A

A B

( )
,

, ,

( . )( . )

[( . )( .
3

3

3 3

0 5 0 98

0 5 0 9
=

�� �
�

�

� �

( )

( ) ( ) 88 0 6 0 17
0 83

) . . ]
.

�
�

( )( )
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f
P A

P A P BA
A

A B

( )
,

, ,

. ( . )

[ . .
4

4

4 4

0 5 0 98

0 5 0 98
=

�� �
�

�

� �

( )

( ) ( )

( )

( )( ) ��
�

( )( )0 6 0 27
0 75

. . ]
.

f
P A

P A P BA
A

A B

( )
,

, ,

. ( . )

[ . .
5

5

5 5

0 5 0 45

0 5 0 45
=

�� �
�

�

� �

( )

( ) ( )

( )

( )( ) ��
�

( )( )0 6 0 6
0 38

. . ]
.

then

f
P B

P A P BB
B

A B

( )
,

, ,

. ( . )

[ . .
5

5

5 5

0 6 0 6

0 5 0 45
=

�� �
�

�

�

� �

( )

( ) ( )

( )

( )( ) (( )( )0 6 0 6
0

. . ]
.� 62

note that f
B
(5) + f

A
(5) = 0.62 + 0.38 = 1.0.

therefore f
B
(1) = 0.83,  f

B
(2) = 0.38,  f

B
(3) = 0.17,  f

B
(4) = 0.25

and  f
B
(6) = 0.15,  f

B
(7) = 0.14,  f

B
(8) = 0.23,  f

B
(9) = 0.17,  f

B
(10) = 0.94

   f
A
(6) = 0.85,  f

A
(7) = 0.86,  f

A
(8) = 0.77,  f

A
(9) = 0.83,  f

A
(10) = 0.06.

6.3 INITIAL CONFIGURATION

Using the membership functional values for A and B serving as an initial 
configuration let U be the membership matrix, as illustrated in Table 6.2:

Membership in

Point A B

U =

 1 0.17 0.83

 2 0.62 0.38

 3 0.83 0.17

 4 0.75 0.25

 5 0.38 0.62

 6 0.85 0.15

 7 0.86 0.14

 8 0.77 0.23

 9 0.83 0.17

10 0.06 0.94

TABLE 6.2 Membership Matrix.
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In iteration one: for each pattern, or point, compute the weighted 
square error criterion function value with respect to the new fuzzy cluster 
centers,

then

C
A

 
 
=  ((0.17)(2.8,3) + (0.62) ��(2.8,3) ��(0.83) ��(2.8,3) ��(0.75) ��(2.8,3) 

��(0.38) ��(2.8,3))

 � (0.48,0.51) � (1.74,1.86) � (2.32,2.49) � (2.1,2.25) � (1.06,1.14)

 � (7.7,5.25)

and

(0.17 � 0.62 � 0.83 � 0.75 � 0.38) � 2.75

the C
A
 � (7.7/2.75,5.25/2.75) � (2.8,1.91)

Similarly C
B
 � (6.89,2.98).

6.4 MERGING OF CLUSTERS

Start with clustering {A,B}. Consider:

E2(1,U
1
)  �  (0.17 ��[1/{(2 � 2.8)2 � (3 � 2.35)2}1/2] � 0.93 ��[1/{(2 � 6.46)2  

� (3 � 2.83)2}1/2] � 0.35

E2(2,U
2
)  �  (0.62 ��[1/{(3 � 2.8)2 � (2 � 2.35)2}1/2] � 0.38 ��[1/{(3 � 6.46)2  

� (2 � 2.83)2}1/2] � 1.64

E2(3,U
3
)  �  (0.83 ��[1/{(1 � 2.8)2 � (4 � 2.35)2}1/2] � 0.17 ��[1/{(1 � 6.46)2  

� (4 � 2.83)2}1/2] � 0.37

E2(4,U
4
)  �  (0.75 ��[1/{(3 � 2.8)2 ��(3 � 2.35)2}1/2] � 0.25 ��[1/{(3 � 6.46)2  

� (3 � 2.83)2}1/2] � 0.38

E2(5,U
5
)  �  (0.38 ��[1/{(5 � 2.8)2 � (3 � 2.35)2}1/2] � 0.62 ��[1/{(5 � 6.46)2  

� (3 � 2.83)2}1/2] � 0.54

E2(6,U
6
)  �  (0.85 ��[1/{(6 � 2.8)2 � (3 � 2.35)2}1/2] � 0.15 ��[1/{(6 � 6.46)2  

� (3 � 2.83)2}1/2] � 0.57
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E2(7,U
7
)  =  (0.86 ��[1/{(7 � 2.8)2 � (2 � 2.35)2}1/2] � 0.14 ��[1/{(7 � 6.46)2  

� (2 � 2.83)2}1/2] � 0.35

E2(8,U
8
)  �  (0.77 ��[1/{(7 � 2.8)2 � (4 � 2.35)2}1/2] � 0.23 ��[1/{(7 � 6.46)2  

� (4 � 2.83)2}1/2] � 0.35

E2(9,U
9
)  �  (0.83 ��[1/{(8 � 2.8)2 � (3 � 2.35)2}1/2] � 0.17 ��[1/{(8 � 6.46)2  

� (3 � 2.83)2}1/2] � 0.43

E2(10,U
10

)  �  (0.06 ��[1/{(7 � 2.8)2 � (3 � 2.35)2}1/2] � 0.94 ��[1/{(7 � 6.46)2  
� (3 � 2.83)2}1/2] � 1.68

E2(x,U) � ( , )x Ui ii

N

=� 1
 �  6.66 is the weighted squared error for the  present 

clustering.

If we merge the clusters into a single cluster, then a single center must 
be found for all the patterns.

TABLE 6.3 Two Cluster Membership Matrix.

Membership in

Point A B

U �

 1 0.17 0.83

 2 0.62 0.38

 3 0.83 0.17

 4 0.75 0.25

 5 0.38 0.62

 6 0.85 0.15

 7 0.86 0.14

 8 0.77 0.23

 9 0.83 0.17

10 0.06 0.94

The membership matrix in Table 6.3 needs to be made into a single 
column. One rule that would apply is to capture the maximum value in each 
row of the existing matrix U, because this grade of membership is accept-
able for A�B:
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TABLE 6.3 Two Cluster Membership Matrix.

Point Membership in

U =

 1 0.83

 2 0.62

 3 0.83

 4 0.75

 5 0.62

 6 0.85

 7 0.86

 8 0.77

 9 0.83

10 0.94

then the single centroid C = [(.83)(2,3) + (.62)(3,2) + (.83)(1,4) + (.75)(3,3) +  
(.62)(5,3) + (.85)(6,3) + (.86)(7,2) + (.77)(7,4) + (.83)(8,3) + (.94)(7,3)] 
[1/(.83 + .62 + . . . + .83 + .94)]

C = (39.43/7.9,21.33/7.9) = (4.99,2.7)

which allows for the computation of the weighted square:

E2(1,U) = (0.83) ��[1/{(2 � 4.99)2 � (3 � 3.17)2}1/2] � 0.28

E2(2,U) � (0.62) ��[1/{(3 � 4.99)2 � (2 � 3.17)2}1/2] � 0.29

E2(3,U) � (0.83) ��[1/{(3 � 4.99)2 � (4 � 3.17)2}1/2] � 0.38

E2(4,U) � (0.75) ��[1/{(3 � 4.99)2 � (3 � 3.17)2}1/2] � 0.38

E2(5,U) � (0.62) ��[1/{(5 � 4.99)2 � (3 � 3.17)2}1/2] � 0.75

E2(6,U) � (0.85) ��[1/{(6 � 4.99)2 � (3 � 3.17)2}1/2] � 0.83

E2(7,U) � (0.86) ��[1/{(7 � 4.99)2 � (2 � 3.17)2}1/2] � 0.37

E2(8,U) � (0.77) ��[1/{(7 � 4.99)2 � (4 � 3.17)2}1/2] � 0.35

E2(9,U) � (0.83) ��[1/{(8 � 4.99)2 � (3 � 3.17)2}1/2] � 0.28

E2(10,U) � (0.94) ��[1/{(7 � 4.99)2 � (3 � 3.17)2}1/2] � 0.47

E2(x,U) �  ( , )x Uii

N

=� 1
 � 4.38 is the weighted squared error for the 

present clustering.
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In this case, the weighted squared error for the single clustering, A∪B, 
has a smaller weighted squared error value than the same value found for 
the clustering {A,B}. This result might infer that the single cluster is the 
clustering to best represent the data, however, at least a complete cluster-
ing method run on the data needs to be completed before determining the 
final clustering.

6.5 FUNDAMENTALS OF FUZZY CLUSTERING

Given a data set X, a crisp clustering partitions X into clusters  
{C

i
 | 1 ≤ i ≤ k, k = number of clusters} with the properties:

I i
K

iC X= =1

C Ci j� � �, for 1 ≤ i,  j ≤ K and i � j

� � � �C i Ki , .1

For such a partition, let U be the membership matrix where each row 
of U contains the membership function values f

i
(C

k
), or the membership 

function value of data point i (row i in X) being a member of cluster C
k
. For 

a crisp partitioning:

f
i
(C

k
) � {0,1}, 1 � k � K, 1 � i � N,  where N is the number of data points in 

X, and there are K clusters

f C i Ni ki

K
( ),

=� � �
1

1

0 1
1

� � � �
�� f C N k Ki ki

N
( ) , .

For a fuzzy partitioning, we simply relax the first condition:

f
i
(C

k
) � [0,1], 1 � k � K, 1 � i � N,  where N is the number of data points in 

X, and there are K clusters

f C i Ni ki

K
( ), 1

1=� � �

0 1
1

� � � �
�� f C N k Ki ki

N
( ) , .
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Consider the example presented in the last section given the following 
data set:

FIGURE 6.5 Data Set with Centroids (2,2) and (6,2) .
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The similarity measures are then:

δ(x,A) δ(x,B)

1.00 0.20

1.00 0.45

1.00 0.24

1.00 0.33

0.67 0.40

0.50 0.50

0.40 0.67

0.33 1.00

0.24 1.00

0.45 1.00

0.20 1.00

0.35 0.35

Now provide a new definition for f
X
(i) which meets the conditions for a 

fuzzy partitioning:

f i
i A

i A i BA( )
( , )

( , ) ( , )
=

�

�

� �
 and f i

i B

i A i BB( )
( , )

( , ) ( , )
.=

�

�

� �
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The membership values for the fuzzy partitioning become the  following:

f
A
(x) f

B
(x)

0.83  0.17

0.69  0.31

0.81  0.19

0.75  0.25

0.67  0.33

0.50  0.50

0.33  0.67

0.25  0.75

0.25  0.75

0.31  0.69

0.17  0.83

0.50  0.50

Notice that data points (4,2) and (4,4) belong to both clusters A and B.  
The fact that the boundary point (4,2) has a membership value of 0.50 in 
both clusters correctly represents its position in the middle position be-
tween the two clusters. But even though (4,4) also has a membership value 
of 0.50, it is actually a greater distance from the centroids of (2,2) and (6,2) 
which means the point (4,4) has a smaller degree of similarity to the  clusters 
A and B than the point (4,2). This type of situation can occur in a fuzzy 
partitioning. To overcome this situation possibilistic functions are utilized:

f
i
(C

k
) � [0,1], 1 � k � K, 1 � i � N,  where N is the number of data points in X, 

and there are K clusters

there exists an i, 1 � i � N, where f
i
(C

k
) > 0, for 1 � k � K 

0
1

� �
�� f C Ni Ki

N
( ) , 1 � k � K.

6.6 FUZZY C-MEANS CLUSTERING

Most fuzzy clustering algorithms are objective function based: They 
determine an optimal classification by minimizing an objective function. In 
objective function based clustering usually each cluster is represented by a 
cluster prototype. This prototype consists of a cluster center, whose name 
already indicates its meaning, and maybe some additional  information 
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about the size and the shape of the cluster. The cluster center is an instan-
tiation of the attributes used to describe the domain. However, the cluster 
center is computed by the clustering algorithm and may or may not appear 
in the data set. The size and shape parameters determine the extension of 
the cluster in different directions of the underlying domain.

The degrees of membership to which a given data point belongs to 
the different clusters are computed from the distances of the data point 
to the cluster centers with respect to the size and the shape of the cluster 
as stated by the additional prototype information. The closer a data point 
lies to the center of a cluster, the higher its degree of membership to this 
 cluster. Hence, the problem is to minimize the distances of the data points 
to the cluster centers, because, of course, we want to maximize the de-
grees of membership.

Several fuzzy clustering algorithms can be distinguished depend-
ing on the additional size and shape information contained in the cluster 
 prototypes, the way in which the distances are determined, and the restric-
tions that are placed on the membership degrees. Distinction is made, how-
ever, between probabilistic and possibilistic clustering, which use different 
sets of constraints for the membership degrees.

For each datum in a probabilistic cluster analysis, a probability distri-
bution over the clusters is determined that specifies the probability with 
which a datum is assigned to a cluster. These techniques are also called 
fuzzy clustering algorithms if the probabilities are interpreted as degrees of 
membership. Possibilistic cluster analysis techniques are pure fuzzy clus-
tering algorithms. Degrees of membership or possibility indicate to what 
extent a datum belongs to the clusters. Possibilistic cluster analysis drops 
the probabilistic constraint that the sum of memberships of each datum 
to all clusters is equal to one. Krishnapuram and Keller8 emphasize that 
probabilistic clustering is primarily a partitioning algorithm, whereas pos-
sibilistic clustering is a rather mode-seeking technique, aimed at finding 
meaningful clusters.

8  Krishnapuram, R. & Keller, J. (1996). The Possibilistic C-Means Algorithm: Insights and 
Recommendations. IEEE Trans. Fuzzzy Systems, 4, 385-393.
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In review, consider the K-means clustering method. The algorithm is 
composed of the following steps:

1. Start with K board games that are amongst the board games that are  
 being clustered. These board games represent the initial group centroids.

2. Assign each board game to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K 
centroids.

Repeat Steps 2 and 3 until the centroids no longer move. This produces 
a separation of the objects into groups from which the metric to be mini-
mized can be calculated.

The K-means algorithm has problems when clusters are of differing sizes, 
densities, and nonglobular shapes. Additionally, the K-means algorithm en-
counters problems with outliers and empty clusters. In research, almost every 
aspect of K-means has been modified including: distance measures, centroid 
and objective function definitions, the overall process and efficiency enhance-
ments, especially in initialization. New distance measures have been utilized 
such as the cosine measure, and the Jaccard measure. Bregman9 divergence 
measures allow a K-means type algorithm to apply to many distance measures.

In the fuzzy c-means clustering, an object belongs to all clusters with 
some weight and the sum of the weights is 1. An excellent source of in-
formation on this algorithm is by Bezdek.10 Harmonic K-means uses the 
harmonic mean instead of standard mean. A general reference to various 
flavors of K-means clustering is available online, Introduction to Data Min-
ing by Tan, Steinbach, and Kumar11 Addision-Wesley, 2005 at http://www-
users.cs.umn.edu/~kumar/dmbook/index.php. Another good resource is 
by Han and Kamber12 also online at http://www-sal.cs.uiuc.edu/~hanj/
bk2. CLUTO clustering software is available at http://glaros.dtc.umn.edu/ 
gkhome/views/clutorences.

 9  Banerjee, A., Merugu, S., Dhillon, I., & Ghosh, J. (2005). Clustering with Bregman Diver-
gences. Journal of Machine Learning Research.

10  Bezdek, J. C. (1973). Fuzzy Mathematics in Pattern Classification, PhD Thesis. Ithaca, 
NY: Cornell University.

11  Tan, P-N, Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining. Addison 
 Wesley.

12  Han, J. & Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd Edition. 
 Morgan Kauffman.
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The fuzzy c-means clustering is simply the following modification of the 
K-means clustering:

Fuzzy C-Means Clustering

This algorithm is based upon iterative optimization of the objective 
function, with update of membership and cluster centers.

�� This is based upon an initial membership matrix for each item in a 
 cluster.

�� Center of clusters are calculated based upon the membership function.

�� Once the centers are determined, the membership matrix is updated.

When the difference between two sequential membership matrixes is 
less than the initial termination criterion, the algorithm is stopped. Other-
wise Steps 2 and 3 are repeated.

Consider the following data set illustrated in Table 6.5 and Figure 6.6.

TABLE 6.5 Fuzzy C-Means Test Data.

X Y Pt ID

0 4  1

0 3  2

1 5  3

2 4  4

3 3  5

2 2  6

2 1  7

1 0  8

5 5  9

6 5 10

7 6 11

5 3 12

7 3 13

6 2 14

6 1 15

8 1 16
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FIGURE 6.6 Scatter Gram for Fuzzy C-Means Test Data.

Assume two centroids: C1 = (2,3) and C2 = (7,3). Let the inverse of 
2-dimensional Euclidean distance be the measure of similarity. Then the 
first iteration of the fuzzy c-means clustering algorithm generates:

Step 1: Choose an initial matrix U:

Pt 1 u(x,1) u(x,2)

 1 0.6 0.4

 2 0.6 0.4

 3 0.9 0.1

 4 0.9 0.1

 5 0.9 0.1

 6 0.9 0.1

 7 0.65 0.35

 8 0.55 0.45

 9 0.35 0.65

10 0.3 0.7

11 0.3 0.7

12 0.1 0.9

13 0.1 0.9

14 0.1 0.9

15 0.3 0.7

16 0.3 0.7
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Step 2: Compute the new centroids

u vi ii

N

11

f
=� = 20.7 and u vi ii

N

11

f
=� = 23.9

uii

N

11=� = 7.85

then C1 = (2.637,3.045)

Similarly, C2 = (4.945,2.957)

where Cluster 1 = {1,2,3,4,5,6,7} and Cluster 2 = {8,9,10,11,12,13,14,15,16}

Step 3: Update the membership matrix U

d11
2 20 2 637 4 3 045= ( . ) ( . )� � �  and δ(1,1) = 1 11d  =

d12
2 20 4 945 4 2 957= ( . ) ( . )� � �  and δ(1,2) = 1 12d  =

The new fuzzy weights are found using

u
u

u u12
1 12

11 12

1 1

1 1 1 2
( ) ,

, ( , )
=

� �
�� �

�

� �( )
 and u

u

u u11
1 11

11 12

1 1

1 1 1 2
( ) ( , )

( , ) ( , )
=

�� �
�

� �

0.730 0.270

0.738 0.262

0.940 0.060

0.961 0.039

0.980 0.020

0.958 0.042

0.754 0.246

0.635 0.365

0.264 0.736

0.202 0.798

0.230 0.770

0.003 0.997

0.050 0.950

0.043 0.957

0.195 0.805

0.213 0.787
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Step 4: Let � � 0.001

if U Uk k( ) ( )�

� � �
1 , where U(k) is the kth iteration U matrix, then Stop else 

start again at Step 2.

Iteration 2

Step 2 new centroids C1 � (2.216,2.995) and C2 � (5.540,7.041)
with matrix U

0.890 0.110

0.904 0.096

0.974 0.026

0.990 0.010

0.988 0.012

0.991 0.009

0.880 0.120

0.772 0.228

0.163 0.837

0.099 0.901

0.140 0.860

0.001 0.999

0.015 0.985

0.013 0.987

0.098 0.902

0.116 0.884

Iteration 3

new centroids: C1 � (1.8088,2.9908) and C2 � (5.929,3.130)
with a new matrix U
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0.969 0.031

0.978 0.022

0.990 0.010

0.997 0.003

0.992 0.008

0.998 0.002

0.954 0.046

0.890 0.110

0.090 0.910

0.040 0.960

0.072 0.928

0.000 1.000

0.003 0.997

0.003 0.997

0.046 0.954

0.054 0.946

Iteration 7 Algorithm stops.
new centroids C1 = (1.414,2.768) and C2 = (6.229,3.237)
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FIGURE 6.7 Final Scattergram.

with cluster membership matrix
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0.99926 0.00074

0.99977 0.00023

0.99927 0.00073

0.99990 0.00010

0.99889 0.00111

0.99998 0.00002

0.99740 0.00260

0.99075 0.00925

0.01233 0.98767

0.00181 0.99819

0.00680 0.99320

0.00001 0.99999

0.00001 0.99999

0.00006 0.99994

0.00438 0.99562

0.00412 0.99588

A fuzzy partition of a data set X is one that characterizes the member-
ship of each data point in all the clusters by a membership function, which 
is in [0,1]. A hard partition, such as a K-means clustering, is a special case of 
fuzzy partitions, where each data point belongs to one and only one cluster. 
Hard partitions have difficulty classifying outliers. However, fuzzy parti-
tions resolve this difficulty.

Fuzzy clustering algorithms can generate hard partitions. Hard cluster-
ing algorithms cannot determine fuzzy partitions. Fuzzy partitions are an 
extension of hard partitions, because each data point in a fuzzy partition 
is assigned to a single cluster but is allowed to be in partial membership in 
several fuzzy clusters.

6.7 INDUCED FUZZINESS

A normal set of heights for tall men might be expressed as Tall =  
{x | x > 6 ft.}. A fuzzy set extension for this set would be defined as Tall = 
{x, µ

A
(x) | x � X}, where �

A
(x) is called the membership function of x in A. 

The membership function maps each element of X to a membership value 
between 0 and 1. To �fuzzify� data in a study, what is needed is a toolbox of 
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commonly applicable membership functions. Some widely used member-
ship functions include:

�� piecewise linear functions,

�� the Gaussian distribution function,

�� the sigmoid curve, and

�� quadratic and cubic polynomial curves.

These membership functions apply, when data is fuzzified, instead of 
the [0,1] step function:
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FIGURE 6.8 Crisp Membership Function.

The triangular and trapezoidal membership curves are useful for deter-
mining fuzzy membership values which are easily implemented.
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FIGURE 6.9 Triangular and Trapezoidal Membership Functions.
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The formulas for these membership functions are shown below:
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(b) Trapezoidal
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The bell membership function, or the traditional normal distribution, 
offers smoothness coupled with a concise notation.
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FIGURE 6.10 Bell, or Gaussian, Membership Function.
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The formula for the Gaussian membership function is:

f(x: �, c) = e
x c� �� �2

22� .

Another commonly used membership function, widely used in learning 
theory as a learning curve, is the sigmoidal curve. This is actually the cumu-
lative distribution function for the normal probability function.
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FIGURE 6.11 Sigmoid Membership Function.

The membership formula for the sigmoid curve is:

S x a b c
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Illustrations of each of these functions are given in Figure 6.12 based 
upon a minimum of 0 and a maximum of 1.0. Note that any number of 
membership functions may be used to express the values of an attribute, 
such as the five used in the illustration that correspond to very low, low, 
medium, high, and very high.
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FIGURE 6.12 Examples of Fuzzy Membership Sets Using Five Functions: (a) Trapezoidal, (b) Triangular, 
and (c) Gaussian.

If numeric attributes are present, make the data fuzzy before con-
tinuing. Each numeric attribute separately should undergo fuzzy c-means 
 clustering (Hoppner, Klawonn, Kruse, and Runkler)13 in order to cluster 
each continuous value into one of the preset number of clusters that are 
represented as nominal values.

6.8 SUMMARY

Dr. Lotfi A. Zadeh initiated fuzzy logic in 1965. Fuzzy logic is a mul-
tivalued logic that allows intermediate values to be defined between con-
ventional evaluations like true/false, yes/no, high/low, etc. Human language 
rules are the foundation for building a fuzzy logic system. These vague and 

13  Hoppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). The fuzzy c-means algorithm. 
Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. 
West Sussex, England: John Wiley and Sons, Ltd., pp. 37-43.
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ambiguous rules are then transformed in mathematical equivalents. Human 
language rules are often not only vague and ambiguous but can be impre-
cise or full of noise and even missing altogether. Fuzzy systems are better 
representations of worldly behavior than their crisp system  counterparts.

Fuzzy systems are especially applicable for nonlinear processes. They 
are helpful for very complex or highly nonlinear processes. On the other 
hand, sometimes results are unexpected and hard to debug in fuzzy sys-
tems. Additionally, as illustrated by the methods in this chapter, fuzzifica-
tion can be computationally complicated. Due to this fact, crisp method is 
preferable if it yields a satisfying result.

In classical K-means procedure, each data point is assumed to be in exact-
ly one cluster. In fuzzy K-means clustering, we can relax this condition and as-
sume that each sample x

j
 has some graded or �fuzzy� membership in a cluster.

6.9 EXERCISES

1. Given the following points in 2 dimensional Euclidean space find  
(a) crisp neighborhoods and (b) fuzzy neighborhoods for clusterings 
containing only 2 clusters:

 5 4.5

 7 4

 9 4

 4 3.5

 9 4.5

 4 4.5

10 4

 5 3.5

10 4.5

 5 4

 6 4

 8 4

 4 4

 9 3.5

10 3.5

TABLE 6.6 Dimensional Euclidean Space Data Set.
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2. Find the centroids for the neighborhoods for Problem 1.

3. Using the reciprocal of Euclidean distance as a similarity measure find 
the membership values for all the points in Problem 1.

4. Using the membership functional values found in Problem 3, find the 
new membership values at the end of one iteration of applying the 
weighted square error criterion function.

5. Merge the two neighborhoods in Problem 4 into a single neighborhood 
and find the new centroid.

6. Given the following data set:

X Y Pt. ID

3 4 1

2 3 2

1 5 3

2 4 4

3 3 5

3 2 6

2 1 7

1 1 8

5 6 9

6 5 10

7 6 11

5 3 12

7 3 13

6 2 14

6 1 15

8 1 16

TABLE 6.7 Second 2-Dimensional Euclidean Space Data Set.

perform a fuzzy c-means clustering on this data set with initial centroids 
c1 = (2,2) and c2 = (6,4).
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7. Induce fuzziness on the following data set for software development 
using the:

A.  Triangular membership function,

B.  Trapezoidal membership function,

C.  Gaussian membership function, and

D.  Sigmoid membership function.

Id Size Effort Duration

 1 562 1062 14

 2 647 7871 16

 3 130 845 5

 4 254 2330 8

 5 1056 21272 16

 6 383 4224 12

 7 345 2826 12

 8 209 7320 27

 9 366 9125 24

10 1181 11900 54

11 181 4300 13

12 739 4150 21

13 108 900 7

14 48 583 10

15 249 2565 19

16 371 4047 11

17 211 1520 13

18 1849 25910 32

19 2482 37286 38

20 434 15052 40

21 292 11039 29

22 2954 18500 14

23 304 9369 14

24 353 7184 28
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25 567 10447 16

26 467 5100 13

27 3368 63694 45

28 253 1651 4

28 196 1450 10

30 185 1745 12

31 387 1798 6

32 430 2957 28

33 204 963 6

34 71 1233 6

35 840 3240 6

36 1648 10000 11

37 1035 6800 8

38 548 3850 22

39 2054 14000 31

40 302 5787 26

41 1172 9700 22

42 253 1100 7

43 227 5578 14

44 59 1060 6

45 299 5279 6

46 422 8117 15

47 1058 8710 9

48 65 796 9

19 390 11023 26

50 193 1755 13

51 1526 5931 28

52 575 4456 13

53 509 3600 13

54 583 4557 12

55 315 8752 14

56 138 3440 12

57 257 1981 9
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58 423 13700 30

59 495 7105 20

60 622 6816 16

61 204 4620 12

62 616 7451 15

63 3634 39479 33

TABLE 6.8 Software Development Data.

8. Use the R system, found on the Internet and in Appendix G, to run a 
variety of hierarchical methods on both the original data and the fuzzi-
fied data from Problem 7. Compare the solutions between the crisp and 
fuzzified clustering solutions.



C H A P T E R7
CLASSIFICATION AND  
ASSOCIATION RULES

7.1 INTRODUCTION

All of the clustering methods presented so far find the number of clus-
ters and the composition of the clusters which best fit the data. However, 
many times in an application the clusters already exist and the problem 
is to assign new data points to the pre-existing clusters, such a procedure  

In This Chapter

7.1 Introduction

7.2 De�ning Classi�cation

7.3 Decision Trees

7.4 ID3 Tree Construction Algorithm

7.4.1 Choosing the �Best� Feature

7.4.2 Information Gain Algorithm

7.4.3 Tree Pruning

7.5 Bayesian Classi�cation

7.6 Association Rules

7.7 Pruning

7.8 Extraction of Association Rules

7.9 Summary

7.10 Exercises
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is called a classification. Besides, developing classification methods this 
chapter introduces the concept of association rules. Often classification is 
accomplished by a tree construction. Given a classification tree enables the 
construction of If-then, or association, rules.

7.2 DEFINING CLASSIFICATION

What is Classification? Often the groups or clusters are already known 
and as new objects are posted to the data in order to maintain the organiza-
tion and categorization of the data, the need is to simply post the data to one 
of the existing clusters.

To accomplish this task requires maintaining the basic goal of data clas-
sification, which is to organize and categorize data into distinct clusters. 
Model construction based upon the data and associated data distribution 
must be implemented. Once this task is in place, the model can be used for 
classifying new data. Basically, prediction is used to decide which existing 
category in which to place the new data. An example in statistics for only 
two categories is discriminate analysis. One way to define classification is 
the following:

Classification = prediction for discrete and nominal values.

Classification falls into two basic types: supervised classification and 
unsupervised classification. This chapter emphasis is on supervised classifi-
cation, when the class labels and number of classes are known. In unsuper-
vised classification, the class labels and number of classes are not known, as 
in the case for clustering.

In general to correctly classify, the following process should be 
 established:

1. Model construction

2. Model evaluation

3. Model application

To develop the model, certain requirements must be supported. First 
each data pattern or record is to be assumed to belong to an existing cluster 
through usage of the record�s class label value. Most classification models 
are represented as a set of classification rules, called association rules in the 
standard �If-then� format or as decision trees.
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Model Construction

Training Data

Classification
Algorithm

Model

Data Records

Uses rules:
If [ ], then [ ].

FIGURE 7.1 Model Construction.

During model evaluation, several tests take place. For assessing accu-
racy one test can be to benchmark the model on a pilot data or test set. Data 
already in the system can be deleted from their class and then treating this 
old data as new data, it can be checked to see if the model correctly assigns. 
The rate of accuracy can be determined by observing the percentage of the 
test set correctly classified by the model.

Model Construction

Training Data

Classification
Algorithm

Model

Data Records

Uses rules:
If [ ], then [ ].

Determine Accuracy,
Reliability, & Validity

FIGURE 7.2 Functional Interpretation of the Model Evaluation.
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Once both model evaluation and model construction have been com-
pleted then the model is ready for use. The model should be reliable and 
valid in:

1. classifying unseen data instances through usage of the class labels, and

2. predicting the actual label values for the data instances.

Many diverse methods of classification have been employed using 
techniques taken from statistics, artificial intelligence, mathematics, library 
science, and business among others. A brief list of techniques includes 
decision tree induction, neural networks, Bayesian classification, associa-
tion-based classification, K-nearest neighbor, case-based reasoning, genetic 
algorithms, and fuzzy sets.

7.3 DECISION TREES

Tree structures are ideally suited for classification because rule systems 
commonly generate sequences of �If [ ], then [ ]� statements. One tree 
structure often used in artificial intelligence is the decision tree, refer to 
Figure 7.3. Note that internal nodes represent tests on data attributes and 
the leaf nodes represent the class labeled either already assigned for old 
data or to be assigned to the new data. Each branch of the tree represents a 
test. Branch nodes represent the specific class and all records being posted 
or searched for possess the same class label value.
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FIGURE 7.3 Decision Tree.

This illustration, as viewed from Figure 7.3, is tied to the concept of 
decision rules. Each path from the root of the tree to a leaf node represents 
a sequence of decision rules. Consider the decision tree in Figure 7.4.

Outlook

Humidity WindyYes

Yes YesNoNo

OvercastSunny Rain

<=80>80 <=40>40

FIGURE 7.4 Relationship Between Decision Rules and Decision Trees.

Figure 7.4 is a famous example from the field of artificial intelligence. It 
has built into it, by tracing the paths to the leaves, decision rules. The cen-
tral path is: If (outlook = overcast) then play (yes). The extreme right path 
is: If (outlook = sunny) and (humidity <=80) then play (yes). The extreme 
left path is: If (outlook = rain) and (windy <=40) then play (yes). There are 
two more rules.
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1.  Classifying new data: look at the data record’s attribute value for the feature 
specified. Move along the edge labeled with this value.

2. If you reach a leaf, return the label of the leaf.

3. Otherwise, repeat from step 1.

FIGURE 7.5 Decision Tree Algorithm for Classification.

7.4 ID3 TREE CONSTRUCTION ALGORITHM

Tree construction at the start involves partitioning of the test data with 
known attribute values. The rules are implemented from the root down. 
The taller the trees and the maximum number of edges from the root to a 
leaf node, the less efficient storage and searching will become. Addition-
ally, many seldom or never used rules will be represented by some path in 
the tree. Again the storage, posting of new data, and searching times may 
be hampered. The solution to these problems is to perform tree pruning 
at tree construction time. Basically, tree pruning involves removing tree 
branches that may reflect noise in the training data and lead to errors when 
classifying test data.

The basic steps in tree construction are:

1. The tree starts as a single node representing all data.

2.  If sample data are all in the same class, then the node becomes a leaf labeled 
with the class label.

3.  Otherwise, select the feature that best separates sample data into individual 
classes.

4. Recursion stops when:

a. Samples in the node belong to the same class (majority), or

b. There are no remaining attributes on which to split.

FIGURE 7.6 Basic ID3 Trees Construction Algorithm.

Input: a set of examples S, a set of features F, and a target set T (target 
class T represents the type of instance we want to classify, e.g., whether �to 
play golf �)
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1. If every element of S is already in T, return �yes�; if no element of S is in 
T return �no�.

2. Otherwise, choose the best feature f from F (if there are no features 
remaining, then return failure).

3. Extend tree from f by adding a new branch for each attribute value.

4. Distribute training examples to leaf nodes (so each leaf node S is now 
the set of examples at that node, and F is the remaining set of features 
not yet selected).

5. Repeat Steps 1�5 for each leaf node.

Main Question:

How do we choose the best feature at each step?

Note: ID3 algorithm only deals with categorical attributes, but can be 
 extended.

The ID3 algorithm, described in Whitten and Frank,1 constructs a de-
cision tree by taking a set of training data and arranging the feature and 
feature values into a tree structure as described previously. ID3 addresses 
the determination of the order of the features examined, the organization 
of the decision tree, by using an entropy-based metric called Information 
Gain (IG) that selects the attribute which will best separate the instances 
into subsets representing a single class. A series of improvements to ID3 
have culminated in an influential and widely used system for decision tree 
induction called C4.5. C4.5 appears in a classic book by Quinlan,2 which 
gives a listing of the complete C4.5 system, written in the C programming 
language. The latter improvements include methods for dealing with nu-
meric attributes, missing values, noisy data, and generating rules from trees.

Currently, two main methods to construct fuzzy decision trees are 
 popular. The first method is based upon the application of a generalized 

1  Whitten, I. H., & Frank, E. (2000). Divide and Conquer: Constructing Decision Trees. 
Data Mining: Practical Machine Learning Techniques with Java Implementations. San 
Francisco, CA: Morgan Kaufmann Publishers, pp. 49-50.

2  Quilan, J. R. (1986). Induction of Decision Trees. Machine Learning, Vol. 1, pp. 81-106. 
(1990). Decision Trees and Decision Making. IEEE Transactions on Systems, Man, and 
Cybernetics, Vol. 20, no. 2, pp. 339-346.
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Shannon entropy, or the entropy of future events as a measure of dis-
crimination (Bouchon-Meunier, Marsala, and Ramdani),3 (Janikow),4 and 
(Weber).5 This method substitutes probabilities of fuzzy events to classical 
probabilities. The second method is based upon another family of fuzzy 
measures (Cios and Sztanadera)6 and (Wang, Qian, and Ye).7

7.4.1 Choosing the “Best” Feature

Entropy, E(I) of a set of instance I, containing p positive and n negative 
examples

E I
p

p n
log

p

p n

n

p n
log

n

n p
( ) .� �

� �

�

� �
2 2

Gain(A, I) is the expected reduction in entropy due to feature A

Gain(A, I) = E(I) � 
p n

p n
E I

j j

jdescendant

�

�
� ( )

the jth descendant of I is the set of instances with value v
j
 for A.

E = –(9/14)log(0/14) – (5/14)log(5/14)
=0.94

Outlook

Overcast RainSunny

[9+, 5–]

[4+, 0–] [2+, 3–] {3+, 2–]

FIGURE 7.7 Finding the “Best” (Most Discriminating) Feature.

3  Bouchon-Meunier, B., Marsala, C., & Ramdani, M. (1997). Learning from Imperfect Data. 
Fuzzy Information Engineering: A Guided Tour of Applications, D. Dubois, H. Prade, and 
R. R. Yager, editors, John Wiley and Sons, pp.139-148.

4  Janikow, C. (1998). Fuzzy Decision Trees: Issues and Methods. IEEE Transactions on 
Systems, Man, and Cybernetics, Vol. 28, no. 1, pp. 1-14.

5  Weber, R. (1992). Fuzzy-ID3: A Class of Methods for Automatic Knowledge Acquisition. 
IIZUKA’92 Proceedings of the 2nd International Conference on Fuzzy Logic, pp. 265-268.

6  Cios, K., & Sztandera, L. (1992). Continuous ID3 Algorithm with Fuzzy Entropy Mea-
sures. Proc. Of The First International IEEE Conference on Fuzzy Systems.

7  Wang, X., Chen, B., Qian, G., & Ye, F. (2000). On the Optimization of Fuzzy Decision 
Trees. Fuzzy Sets and Systems, Vol. 112, no. 1, pp. 117-125.
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7.4.2 Information Gain Algorithm

Assume a universe of objects described by N training instances. This 
universe of objects is completely described by n attributes and one class at-
tribute. This set of attributes is defined as A = {A(1), A(2),. . ., A(n)}. For the kth 
attribute, A(k), there are m

k
 possible attribute values that define the subsets 

which can be classified into C subsets ω
1,
 ω

2
, . . . , ω

C
.

The metric used to determine the splitting attribute is based on the 
classical definition of entropy. H

i
(k) is the entropy extant in the ith subset of 

a set split on attribute A(k) and is defined as

H
i
(k) = Σ

j�=1
C � p

i
(k)(  j) log(p

i
(k)(  j)),

where p
i
(k)(  j) is the relative frequency of the ith subset of the kth attribute 

with respect to the subset ω
j
 where 1 ≤ j ≤ C. That is, H

i
(k), represents the 

entropy present in the child node created by those instances that have the 
ith value of the proposed splitting attribute A(k). The relative frequency, in 
turn, is defined as

p
i
(k)(  j) = {M(A

i
(k) ∩ ω j)}/{M(A

i
(k))},

where A
i
(k) represents all instances that have the ith value of attribute A(k), 

A
i
(k) ∩ ω

j
 representing the members of ω�

j
 that have the ith value of attribute 

A(k) and M(.) is the cardinality of a fuzzy set. Simply stated, p
i
(k)(j) is the pro-

portion of instances in the child node that are members of ω
j
.

In order to choose the best splitting attribute, the sum of the entropy 
for all nodes that would be created by splitting on that attribute must be 
computed. E(k) is the combined entropy extant in all subsets created by 
splitting on A(k) and is defined as

E(k) = Σ
i= 1

 m
k
 {[M(A

i
(k))/Σ

j=1
 m

k
 M(A

j
(k))] � H

i
(k)},

where 
j=1

 m
k
 M(A

j
(k)) is the cardinality of all instances in the node being split. 

The combined entropy E(k), therefore, computes the sum of the entropy 
present at each child node weighted by the proportion of instances that oc-
cupy the child node.

An attribute, A(h), is chosen for splitting at each non-leaf node such that 
h is the value of the index k that corresponds to the minimum entropy as 
a result of splitting on A(k). That is A(h) is the attribute that corresponds to 
min(E(k)) for 1 � k � n.

In practice, no further calculations are needed. The attribute that mini-
mizes the combined entropy of the child nodes is the attribute that pro-
duces the best localized split, forming the most unambiguously classified 
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nodes even if no further splitting were to take place. The Information Gain 
metric, however, derives its name from the difference of entropy extant in 
the current node, E, and the combined entropy present in its child nodes, 
E(k). The entropy of the current node is defined as

E = ΣC
j=1

 � p(j) log(p(j)),

where p(j) = M(ω
j
)/M(N) represents the frequency of an instance in the 

node belonging to the class ω
j
. Using this definition, the Information Gain, 

or IG(k), for splitting on the attribute A(k) can be calculated as

IG(k) = E � E(k).

This illustrates that IG(k) is the expected reduction in entropy caused by 
knowing the value of A(k). The attribute that maximizes the decrease in 
entropy, or maximizes the gain in information, therefore, minimizes the 
amount of information needed to classify the instances in the resulting child 
nodes (Doug and Kothari).8

Clearly, using Information Gain as an attribute selection measure 
minimizes the expected levels of branching needed to classify an in-
stance, although this method does not ensure that the simplest tree will 
be formed.

Several data sets are available for testing the classification accuracy for 
the fuzzy ID3 tree induction algorithm. Nominal and numeric and data sets 
containing both nominal and numeric attributes can be selected from the 
UCI Machine Learning Repository (Blake and Metz).9 The example of the 
weather problem is from Quinlan2 and has been widely used to explain ma-
chine learning schemes. This repository is a publicly available collection of 
databases submitted from data sources worldwide. The Iris data set, which 
dates back to seminal work by the eminent statistician R. A. Fisher in the 
mid-1930s and is arguably the most famous data set used in data mining 
(Fisher).10 These data sets can be obtained from a source online.

 8  Doug, M., & Kothari, R. (2001). Look-Ahead Based Fuzzy Decision Tree Induction. IEEE 
Transactions on Fuzzy Systems, 9(3), 461-468.

 9  Blake, C. L., & Merz, C. J. (1998). UCI Repository of Machine Learning Databases. 
Department of Information and Computer Sciences, University of California, Irvine, CA 
URL: http://www.ics.uci.edu/~mlearn/MLRepository.html.

10  Fisher, R. (1936). The use of Multiple Measurements in Taxonomic Problems. Annual Eu-
genics 7 (part II), reprinted in Contributions to Mathematical Statistics, 1950, pp. 179-188.
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Day Outlook Temp Humidity Wind Play

D1 sunny hot high weak No

D2 sunny hot high strong No

D3 overcast hot high weak Yes

D4 rain mild high weak Yes

D5 rain cool normal weak Yes

D6 rain cool normal strong No

D7 overcast cool normal strong Yes

D8 sunny mild high weak No

D9 sunny cool normal weak Yes

D10 rain mild normal weak Yes

D11 sunny mild normal strong Yes

D12 overcast mild high strong Yes

D13 overcast hot normal weak Yes

D14 rain mild high strong No

TABLE 7.1 The Weather Data Set.

By applying the formulas in Figure 7.8 to the weather data set, we can 
find the gain in information for branching from the humidity to the next 
level of the tree.

E I
p

p n
log

p

p n

n

p n
log

n

n p
( ) � �

� �

�

� �
2 2

and

Gain(A, I) = E(I) � 
p n

p n
E I

j j

jdescendant

�

�
� ( )
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Gain (humidity) = 0.94– (7/14)*0.985– (7/14)
 *0.592) = 0.151

[9+, 4–]  (E = 0.94)

Humidity

Normal

[6+, 1–]  (E = 0.592)

High

[3+, 4–]  (E = 0.985)

FIGURE 7.8 Gain in Information for Humidity Node Branching.

For the wind node, the gain in information is:

Gain(humidity) = 0.94–(8/14)*0.811–(8/14)
*1.0) = 0.048

[9+, 5–]  (E = 0.94)

Wind

Strong

[3+, 3–]  (E = 1.0)

Weal

[6+, 2–]  (E = 0.811)

FIGURE 7.9 Gain in Information for Wind Node Branching.

Because outlook has the largest gain in information, then outlook would 
be selected as the root in the path to a leaf node.
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Sometimes during the construction of a classification tree, the tree 
overfits the training data set. Overfitting is due to noise being present in 
the data set. Another explanation for overfitting is that the training data 
was too small and, as a result, some of the actual rules were not present 
in the training data set. One solution to overfitting is of a preventive na-
ture, simply stop growing the tree at an earlier time. A post hoc method for 
avoiding overfitting is to postpone the corrective action until tree prunning 
is performed.

Another question that must be answered is Has the �correct� tree 
been found? One method for finding the �correct� tree is to use all the 
data for training and at each branch node during tree construction deter-
mine whether splitting nodes in the current tree structure would enhance 
the overall information gain. Many times the decision to split nodes can  
be made during pruning.

7.4.3 Tree Pruning

Pruning is the process of removing branches and subtrees that are gen-
erated due to noise, which improves classification accuracy. The final ver-
sion of the ID3 tree construction, a recursive process utilized at each node 
starting with the root node, is described below:
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1. Create Node. Create a new node that represents all instances that have  

made it to this point.

2. Test Stopping Criteria. Test the stopping criteria to determine whether  

this node will be a leaf node or an internal node that requires further  

splitting.

Stopping Criteria

�� If all instances belong to class ω
j
, then return the current node as a leaf node 

labeled with the class ω 
j
.

�� If the attribute list is empty, compute the class distribution and return the cur-

rent node as a leaf node labeled with the most prevalent class by the majority 

voting.

�� If no instances are present at this node, then return a null node, a leaf node 

that is unclassified.

Determine Splitting Attribute. Compute the Information Gain of each attribute, 

A(k), in the list of attributes, and assign the attribute for this node.

i. Label Current Node. Label the current node with the splitting  attribute.

Partition Data. For each known value i, 1 ≤ i ≤ m
h
, retrieve only the instances that 

have the ith value of A(h) from the list of attributes for each of the data partitions 

because this attribute has now been used as a splitting criterion and no further 

information can be gained by using it again.

Create Child Nodes. For each subset of instances created by splitting the data, 

create a child node by making a recursive call to (2). Label the pathway to each 

new node with the appropriate value for A(h).

FIGURE 7.10 Final ID3 Tree Construction Algorithm.
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7.5 BAYESIAN CLASSIFICATION

Bayesian classification is another method of classifying using probability 
instead of decision tree construction. This method is a statistical classifier 
based on Bayes theorem. It uses probabilistic learning by calculating explic-
it probabilities for the hypothesis. By assuming total independence between 
attributes, a Bayesian classifier can be used with a high degree of confidence 
with large data sets. Each training example can incrementally increase or 
decrease the probability that a hypothesis is correct. The assumption that 
prior knowledge can be combined with observed data is enforced.

Example:

Given a standard deck of fifty-two playing cards. Let B1 be the event 
of drawing the ace of spades. Let B2 be the event of drawing a face card 
in spades. Find the probability of B1 given that B2 has already happened.

�� The question above wants P(B1|B2).

�� The answer intuitively wants the probability of drawing the ace of 
spades only if the sample space after B2 actually takes place. This  
revises the sample space to contain only 9 playing cards.

�� So the answer is 1/9, not 1/13 or the P(B1).

�� The equation to solve it is:

P(B1|B2) = P(B1∩B2)/P(B2) [Product Rule]

P(B1 and B2) = P(B1) ��P(B2) [If B1 and B2 are independent]

In general, P(A�B) = P(B) × P(A|B) and P(B�A) = P(A) × P(B|A) for 
any two events A and B. Since P(A�B) = P(B�A), then P(B) × P(A|B) = 
P(A) × P(B|A). Therefore the following holds: P(A|B) = [P(A) × P(B|A)] / 
P(B), which implies the result:

P A B
P A P B A

P B

P A P B A

P A P B A P A P B A
( | )

( ) ( | )

( )

( ) ( | )

( ) ( | ) ( ) ( | )
= =

�

The general Bayesian theorem is:

Given E1, E2,�,En are mutually disjoint events and P(Ei) � 0, (i = 1, 
2,�, n)

P(Ei/A) = [P(Ei) × P(A|Ei)] /  [P(Ei) × P(A|Ei)].
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Consider being given a data sample X with an unknown class label 
where H is the hypothesis that X belongs to a specific class C. The condi-
tional probability of hypothesis H given X, Pr(H|X), follows Bayes theorem:

Pr( / )
Pr( / ) ( )

( )
.H X

X H H

X
=

Pr

Pr

Suppose we have n classes C
1
, C

2
,�,C

n
. Given an unknown sample X, 

the classifier will predict that X = (x
1
, x

2
, �, x

n
) belongs to the class with the 

highest conditional probability.

X C if C X C X for i j n i ji i j� Pr / Pr , ,/� � � � � � � �

Note that maximizing Pr(X/C
i
) � Pr(C

i
)/Pr(X) is in reality maximizing 

Pr(X/C
i
) Pr(C

i
). Then the computations for the Bayesian classifier are:

Pr(C
i
) = s

i 
/s and

Pr( / ) ( / ) / / .X C x C where x C s si k i k i k ik

n
= =

=� Pr Pr( )
1

Why use Bayesian Classification?

�� Probabilistic learning: Calculate explicit probabilities for  hypothesis, 
among the most practical approaches to certain types of learning 
 problems.

�� Incremental: Each training example can incrementally increase/ 
decrease the probability that a hypothesis is correct. Prior knowledge 
can be combined with observed data.

�� Probabilistic prediction: Predict multiple hypotheses, weighted by 
their probabilities.

�� Standard: Even when Bayesian methods are computationally intrac-
table, they can provide a standard of optimal decision making against 
which other methods can be measured.

A simplified assumption when constructing a Naïve Bayesian Classifier 
(NBC) is that the attributes are conditionally independent. This assump-
tion reduces the computation cost, because the only count required is the 
class distribution. The probabilistic model of NBC is to find the probability 
of a certain class given multiple disjoint (assumed) events.
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The NBC applies to learning tasks where each instance x is described 
by a conjunction of attribute values and where the target function f(x) can 
take on any value from some finite set V. A set of training examples of 
the target function is provided, and a new instance is presented, described  
by the tuple of attribute values <a1, a2,�, an>. The learner is asked to pre-
dict the target value, or classification, for this new instance.

Abstractly, probability model for a classifier is a conditional model: 
P(C|F

1
, F

2
, �, F

n
). Over a dependent class variable C with a small number 

of outcome or classes conditional over several feature variables F
1
, �, F

n
.

The Naïve Bayes Formula is:

P(C|F
1
, F

2
,�, F

n
) =  argmax

c
 [P(C) × P(F

1
|C) × P(F

2
|C) × �  

× P(F
n
|C)] / P(F

1
,F

2
,�, F

n
)

Because P(F
1
, F

2
, � , F

n
) is common to all probabilities, we do not need 

to evaluate the denominator for comparisons.

The following discussion builds an NBC for the following data set:

Age Income Student Credit_rating Buys_computer

x ≤ 30 High No Fair No

x ≤ 30 High No Excellent No

30 < x ≤ 40 High No Fair Yes

x > 40 Low Yes Fair Yes

x > 40 Low Yes Excellent No

30 < x ≤ 40 Low Yes Excellent Yes

x ≤ 30 Medium No Fair No

x ≤ 30 Low Yes Fair Yes

x > 40 Medium Yes Fair Yes

x ≤ 30 Medium Yes Excellent Yes

30 < x ≤ 40 Medium Yes Excellent Yes

30 < x ≤ 40 High Yes Fair Yes

x > 40 Medium No Excellent No

TABLE 7.2 Sample Data Set.

We are given a new data point, x = (age
i
, income

i
, student

i
, credit-

rating
i
) and need to estimate P(buy_computer|x) in order to post the new 

data point into the data set.
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Note that P(buy_computer|x
i
) = 

P P _

P

( _ ) ( )

( )

x buy computer buy computer

x
i

i

. 

Therefore we need to choose the value of buy_computer that maxi-
mizes P(buy_computer|x

i
). This means we need to choose the value of buy_

computer that maximizes P(x
i
|buy_computer)P(buy_computer). 

Assume for (x
1
, x

2
,�, x

4
) to be posted in X after determination of the 

value for buy_computer that

P(x
i
|buy_computer

j
) =  P(x

1
|buy_computer

j
) � P(x

2
|buy_computer

j
) � �  

� P(x
4
|buy_computer

j
)

The first step is to compute P(x
i
|buy_computer

j
) for all x

i
 and buy_ 

computer
j
.

The new data point is classified as a specific buy_computer
j
 value if

P(buy_computer
j
)	

j
P(x

i
|buy_computer

j
) is maximal.

The classes for buy_computer has the following probabilities: P(buy_

computer = No) = 
5

13
 and P(buy_computer = Yes) = 

8

13
.

P(x
1
 = x � 30|buy_computer = No) = 3/5; P(x

1
 = x � 30|buy_computer = Yes) = 2/8

P(30 � x � 40|buy_computer = No) = 0; P(30 � x � 40|buy_computer = Yes) = 2/8

P(x 
 40|buy_computer = No) = 2/5; P(x 
 40|buy�computer = No) = 4/8

P(Student = No|buy_computer = No) = 4/5;

P(Student = No|buy_computer = Yes) = 1/8;

P(Student = Yes|buy_computer = No) = 1/5;

P(Student = Yes|buy_computer = Yes) = 7/8;

P(Income = High|buy_computer = No) = 2/5;

P(Income = High|buy_computer = Yes) = 2/8;

P(Income = Medium|buy_computer = No) = 1/5;

P(Income = Medium|buy_computer = Yes) = 4/8;

P(Income = Low|buy_computer = No) = 1/5;

P(Income = Low|buy_computer = Yes) = 3/8;
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P(Credit-rating = Fair|buy_computer = No) = 2/5;

P(Credit-rating = Fair|buy_computer = Yes) = 5/8;

P(Credit-rating = Excellent|buy_computer = No) = 3/5;

P(Credit-rating = Excellent|buy_computer = Yes) = 3/8;

Then P(x|buy_computer = No) =  P(Age is x ≤ 30|buy_computer = No) ��

� P(Income =  Medium|buy_computer = No) �

� P(Student = No|buy_computer = No) �

 P(Credit-rating = Fair|buy_computer = No)

P(x|buy_computer = No) = 0�(1/5)(4/5)(2/5)

Note that if one of the conditional probabilities is zero, then the entire 
expression is zero. To overcome this situation, use the estimate 

P(x
i
|buy_computer = No) = 

N

N Number of classes

i buy computer No

buy computer No

, -

-

=

=

�

�

1
 = 3/7

Then P(x|buy_computer = No) = (3/7)(1/5)(4/5)(2/5) = 0.0274

P(x|buy_computer = Yes) = P(Age is x = 30|buy_computer = Yes) �

 P(Income = Medium|buy_computer = Yes) �

 P(Student = No|buy_computer = Yes) �

 P(Credit_rating = Fair|buy_computer = Yes)

P(x|buy_computer = Yes) = (1/8)(3/8)(1/8)(4/8) = 0.0293

P(x|buy_computer = No) P(buy_computer = No) = (0.0274)(5/13) = 0.0105

P(x|buy_computer = Yes) P(buy_computer = Yes) = (0.0293)(8/13) = 0.018

Then P(buy_computer = No|x) � P(buy_computer = Yes|x) implies that 
x is assigned to the class buy_computer = Yes.

Note that in this problem instance all the attributes were categorical. 
For each continuous attribute A in a data set for an NBC, simply imple-
ment a set of labels for the continuous values. Place one ordinal value per 
label. By assuming the data is normally distributed, which allows the use 
of the sample mean and standard deviation as estimates for the popula-
tion mean and standard deviation, the P(the jth attribute value |C) can be 
found.
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7.6 ASSOCIATION RULES

We have seen how a classification tree generates If-Then rules, which 
are referred to as association rules. Actually association rules were devel-
oped for conducting a market basket analysis. Grocery stores need to find 
answers to the following questions: What do the customers purchase? Are 
certain combinations of products purchased in a given transaction? Basi-
cally, management needs to determine the associations and correlations be-
tween the items commonly found in their shopping baskets.

A transaction database, T, is a finite set of transactions T = {t
1
, t

2
, �, 

t
n
}, where each transaction contains a set of items, I. An item set is a finite 

set of items, I = {s
1
, s

2
, �, s

m
}. The goal is to determine frequent patterns, 

associations, correlations, or causal structures contained in the item sets in 
the transaction database and express these relationships in terms of associa-
tion rules, If-Then rules.

Consider the following transactions for purchases at the local grocery 
store, as illustrated in Table 7.3:

Trans. ID Items

T1 Soda, potato chips, chip dip

T2 Soda, bread, meat

T3 Bread, mustard, meat

T4 Soda, cookies

T5 Bread, potato chips

T6 Bread, meat, ketchup

TABLE 7.3 Grocery Store Transaction Database.

The frequency support count for an item set, �(I), is the frequency of 
occurrence of the item set across the transaction database. For the latter 
transactions, the following support counts are present:

�({soda, potato chips}) = 1

�({soda}) = 3

The support for an item set, s(I), is the fraction of transactions in the 
transaction database that contain the item set. For the transactions in 
 Table 7.3 see the following:
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s({soda, potato chips}) = 1/6

s({soda}) = 3/6

A frequent item set is an item set whose support is greater than or equal 
to a minimum support threshold, the minsup. For example, if we set the 
minsup to 1/3 then {soda} is a frequent item set and {soda, potato chips} is 
not a frequent item set.

An association rule is an implication between two item sets. For ex-
ample, in the transaction database in Table 7.3 we note that, if the customer 
purchases meat, then the customer purchases meat in the same transaction. 
The association rule is denoted as:

{meat} � {bread}.

Note that the occurrence of the association rule is:

S X Y
X Y

k
( )

( )
� �

��
, where k is the number of transactions that con-

tain both X and Y.

For {meat} � {bread}:

s({meat} � {bread}) = 3/4 = 0.75

The confidence of the association rule X � Y, or the strength of the as-
sociation, is a measurement of how often items in the item set Y appear in 
transactions that contain the item set X.

C(X � Y) = 
�

�

( )

( )
.

X Y

X

∪

For {meat} � {bread}:

C(For {meat} � {bread}) = 4/3 = 1.33.

Many distinct types of rules exists:

1. Binary association rules:

 {meat} � {bread}

2. Quantitative association rules:

 US currency [$25] � Old English currency [10 pounds].

3. Fuzzy association rules:

 Tall � Heavy
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To thoroughly study the transaction database in Table 7.3 we need to 
consider all combinations of items. Because there are 8 items we would 
need to consider

8

0

8

1

8

8







+






+ +






@  = 256 item sets.

These item sets generate 512 association rules to consider. Do not pan-
ic! There exists a downward closure property to enable us to only have to 
investigate a proper subset of the total set of items.

Downward Item Set Closure Theorem: Any subsets of a frequent 
item set are also frequent item sets.

This leads to the following algorithm to determine all the frequent item 
sets in a transaction database, called the Apriori Algorithm:

Apriori Algorithm

Step 1: k = 1

Step 2: Generate all frequent item sets of length 1.

Step 3: Repeat until no frequent item sets are found.

 k: = k + 1

 Generate item sets of size k from the k – 1 frequent item sets

 Calculate the support of each candidate by scanning the transaction 

database.

FIGURE 7.11 The Apriori Algorithm.

In summary, the search for all association rules consists of two primary 
steps:

1. Generate all frequent item sets whose support is greater or equal to 
minsup.

2. Use the frequent item sets to generate association.

For each frequent item set I, we can search for all nonempty subsets A 
of I, such that the association rule I → I � A satisfies the minimum confi-
dence. Then I → I � A is a rule.
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If I = {A, B, C} then the trivial association rules hold: AB � C, AC � 
B, BC � A, A � BC, B � AC, and C � AB. There are 2k � 2 candidate 
association rules, where k is the number of items in the item set I. Also note 
that for a given item set I = {A, B, C, D} then if c(ABC � D) � c(AB � 
CD) � c(A � BCD). This last property for item sets can be used for prun-
ing during rule generation.

7.7 PRUNING

Why prune? The answer is due to overfitting. This is due to the con-
struction of a tree with too many branches, some of which may reflect 
anomalies due to noise or outliers. The overfitting could be due to a non-
representative input data set during tree construction.

There are two approaches to tree pruning:

1. Prepruning: Halt tree construction early if splitting a node would result 
in the information gain falling below a threshold value.

2. Postpruning: Remove branches after the completion of tree construc-
tion and then prune the tree.

The ID3 algorithm can grow each branch of the tree just deeply enough 
to perfectly classify the examples based upon the input data set. This prac-
tice can lead to difficulties when there is noise in the data, or when the data 
set is too small to produce a representative sample of the true target func-
tion. In both cases, the ID3 algorithm can produce trees that overfts.

There are several approaches to avoiding overfitting in decision tree 
learning. These can be grouped into two classes:

approaches that stop growing the tree earlier, before it reaches the 
point where it perfectly classifies the data,

approaches that allow the tree to overfit the data, and then post prune 
the tree.

Although the first of these approaches might seem more direct, the 
second approach of postpruning overfit trees has been found to be more 
successful in practice. This is due to the difficulty in the first approach of 
estimating precisely when to stop growing the tree. Regardless of whether 
the correct tree size is found by stopping early or by postpruning, a key 



170  Cluster Analysis and Data Mining

question is what criterion is to be used to determine the correct final tree 
size. Approaches include:

Use a separate data set, distinct from the data set used in tree 
construction, to evaluate the utility of postpruning nodes from  
the tree.

Use all the available data for tree construction, but apply a statistical 
test to estimate whether expanding (or pruning) a particular node is 
likely to produce an improvement beyond the rules extracted from 
the tree construction data set.

Use an explicit measure of the complexity for encoding the 
association rules constructing the tree, halting growth of the tree 
when this encoding size is minimized. This approach is based on a 
heuristic called the Minimum Description Length principle.

The first of the above approaches is the most common and is often 
referred to as a training and validation set approach. In this approach, the 
available data are separated into two sets of examples: a rule construction 
set, which is used to form the learned hypothesis, and a separate valida-
tion set, which is used to evaluate the accuracy of this hypothesis over 
 subsequent data and, in particular, to evaluate the impact of pruning this 
hypothesis.

7.8 EXTRACTION OF ASSOCIATION RULES

The extraction rules are:

1. Represent the knowledge in the form of If-Then rules.

2. Each rule is created for each path from the root to a leaf.

3. Each attribute-value pair along a path forms a conjunction.

7.9 SUMMARY

�� The ID3 tree induction algorithm is well-suited for analyzing and 
condensing purely nominal data sets into an easily interpreted tree 
 structure that can be used for making rules and classifications of un-
known instances.



Classification and Association Rules  171

�� A fuzzy modification of the ID3 tree which combines the simplicity of 
data representation in a tree structure would enable the ability to ana-
lyze data sets that contain both nominal and numeric attributes.

�� Fuzzy decision trees would allow for the maintaining the ease of inter-
pretation of a decision tree while increasing the flexibility of its repre-
sentation, so that analytic tools can be employed in their construction. 
By including fuzzy tests in the decision tree construction, it would 
increase its expressive capability and incorporate into its construction 
characteristics of connectionist methods that are useful to generate a 
learning device that is flexible, robust, and capable to generalize.

�� A statistical classification system:

1. Defines classes of objects

2. Specifies probability distribution model connecting classes to 
 observable features

3. Fits parameters of model to data

4. Observes features on inputs and compute probability of class 
 membership

5. Assigns object to a class

�� A Bayesian classification system:

1. Defines classes

2. a. Specifies probability model

 b. And prior distribution over parameters

3. Finds posterior distribution of model parameters, given data

4. Computes class probabilities using posterior distribution (or 
element of it)

5. Classifies objects

�� The advantages of a Bayesian classifier include:

Simple to implement

 � No numerical optimization, matrix algebra, etc.
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Efficient to train and use

 � Fitting is accomplished by computing means of feature values

 � Easy to update with new data

 � Equivalent to linear classifier, so fast to apply

Independence allows parameters to be estimated on different data 
sets, e.g.,

 � Estimate content features from messages with headers omitted

 � Estimate header features from messages with content missing

Generative model

 � Comparatively good effectiveness with small training sets

 � Unlabeled data can be used in parameter estimation (in theory)

�� The disadvantages for Bayesian classifiers include:

Independence assumption wrong

 � Absurd estimates of class probabilities

 � Threshold must be tuned, not set analytically

Generative model

 � Generally lower effectiveness than discriminative techniques (e.g., 
log, regress)

 � Improving parameter estimates can hurt classification 
effectiveness

7.10 EXERCISES

Use the UCI Machine Learning Repository (Blake and Metz),9 found 
on the Internet, as the data set for a particular problem. This repository 
is a publicly available collection of databases submitted from data sources 
worldwide. In particular obtain access to the following data sets: Nomi-
nal Weather Data, Mixed Weather Data, Nominal Car Data, Numeric Iris 
Data, and Numeric Yeast Data.
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The first Nominal Weather Data is based upon a small, nominal data 
set. This data set is used primarily for illustrative purposes, to highlight ap-
plying the ID3 tree induction algorithm for purely nonnumeric instances 
where the fuzzification of features is not required.

The Mixed Weather Data consists of fourteen instances of two nomi-
nal attributes, outlook and wind, and two numeric attributes, temperature 
and humidity, plus a classification attribute, play. A determination is made 
as whether or not the environmental conditions are suitable for playing 
 outside.

Seven nominal attributes, in the nominal car data set, describing as-
pects of a car�s maintenance, physical features, safety, and cost are used to 
determine the degree to which a car would be considered a �good� buy. 
There are four possible classifications: unacceptable, acceptable, good, and 
very good. In total, the data set consists of 1,728 instances.

The well-known iris data set involves only numeric instances. In addi-
tion to having four numeric attributes describing the length and width of 
both the sepal and petal of three species of irises, the iris data set is also 
known to be nonlinearly separable. A determination of the correct species 
(Iris-setosa, Iris-veriscolor, or Iris-virginica) of the iris given the four mea-
surements is made.

The numeric yeast data set originates from the Osaka University Insti-
tute of Molecular and Cellular Biology. Each instance represents a protein 
sample, and the goal of the classification is to determine from which cel-
lular location the protein sample originated inside a yeast cell. The nine 
numeric attributes quantify biochemical tests performed on the protein 
samples. Each of the 1,484 instances can be classified into one of ten pos-
sible cellular locations.

1. Manually construct an ID3 classification tree for the nominal weather 
data set.

2. Compute the information gain in the humidity node of the ID3 
 classification tree for the weather data set.

3. Express the decision tree for Problems 1 and 2 as a set of rules.

4. Either develop and implement ID3 classification tree software or use 
software you have access to for constructing the ID3 classification tree 
for the following data set.
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Age Income Student Credit_rating Buys_computer

x ≤ 30 High No Fair No

x ≤ 30 High No Excellent No

30 < x ≤ 40 High No Fair Yes

x > 40 Low Yes Fair Yes

x > 40 Low Yes Excellent No

30 < x ≤ 40 Low Yes Excellent Yes

x ≤ 30 Medium No Fair No

x ≤ 30 Low Yes Fair Yes

x > 40 Medium Yes Fair Yes

x ≤ 30 Medium Yes Excellent Yes

30 < x ≤ 40 Medium Yes Excellent Yes

30 < x ≤ 40 High Yes Fair Yes

x > 40 Medium No Excellent No

TABLE 7.4 Hypothetical Sample Data.

5. Redo Problem 3 for the nominal yeast data set. Note this data set 
 contains only numeric attributes. To work with continuous variables,  
use the following strategy:

1. sort the examples according to the continuous attribute A

2. identify adjacent examples that differ in their target classification

3. generate a set of candidate thresholds midway

problem: may generate too many intervals

or

1. take a minimum threshold M of the examples of the majority class 
in each adjacent partition; then merge adjacent partitions with the 
same majority class

6. Build a Bayesian classifiers for the weather data sets.

7. Build a Bayesian classifier for the following data file:
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Id Age Sex Region Income Married Children Car Save_act Current_act Mortgaage Pep

ID12101 48 female inner_city 17546 no 1 no no no no yes

ID12102 40 male Town 30085.1 yes 3 no no yes yes no

ID12103 51 female inner_city 16575.4 yes 0 yes yes yes no no

ID12104 23 female Town 50576.3 yes 3 no no yes no no

ID12105 57 female Rural 20375.4 yes 0 yes yes no no no

ID12106 57 female Town 67869.6 yes 2 yes yes yes no no

ID12107 22 male Rural 8877.07 no 0 no no yes no yes

ID12108 58 male Town 24946.6 yes 0 yes yes yes no no

ID12108 37 female SUBURBAN 25304.3 yes 2 yes no no no no

ID12108 54 male Town 24212.1 yes 2 yes yes yes no no

ID12108 66 female Town 59803.9 yes 0 no yes yes no no

TABLE 7.5 Sample Mail Campaign Data.
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your focus is to determine likely responders to a direct mail campaign given 
the following strategies:

1. a new product, is a �Personal Equity Plan� (PEP).

2. training data include records kept about how previous customers 
responded and bought the product.

3. in this case the target class is �PEP� with a binary value.

4. build a model and apply it to new data (a customer list) in 
which the value of the class attribute is not available.

8.  For the following table:

Tuple Items

T1 Bread, jelly, peanut butter

T2 Bread, peanut butter

T3 Bread, milk, peanut butter

T4 Soda, bread

T5 Soda, milk

TABLE 7.6 Transaction Data Set.

  (a) Intuitively list the frequent item sets

  (b) What is the support count for:

 a. {bread, peanut butter}

 b. {soda, milk}

  (c) What is the support for:

 a. {bread, peanut butter}

 b. {soda, milk}

9.  Complete the following table:

Association rule Support Confidence

Bread � peanut butter

Peanut butter � bread

Soda � bread

Peanut butter � jelly

Jelly � peanut butter 

Jelly � milk
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10. For the following database:

  

Tuple Items

10 A, B, D

20 B, C, E

30 A, B, C, E

40 B, E

FIGURE 7.12 Hypothetical Transaction Database

Derive the results of the apriori algorithm on the database.

11.  When constructing a classification tree, how can overfitting be 
 accomplished?

12. How can you determine the correct size of a classification tree?

13. Outline the rule postpruning algorithm and compare it to tree pruning.

14. What problems are appropriate for decision tree learning?

15. Which are the main features of decision tree learning?

16. Consider the following table of purchases at a local office supply store:

Trans ID Cust ID Date Item Qty

1 17 3/1/12 HD 1

1 17 3/1/12 Flash drive 1

1 17 3/1/12 Software 1

2  4 3/8/12 Flash drive 2

2  4 3/8/12 Software 1

2  4 3/8/12 Paper 4

2  4 3/8/12 Ink cart 2

2  4 3/8/12 HD 1

3  9 3/15/12 Ink cart 1

3  9 3/15/12 Flash drive 1

3  9 3/15/12 Software 1

4 11 3/22/12 Ink cart 1

4 11 3/22/12 HD 2

4 11 3/22/12 Paper 1

TABLE 7.8 Office Supply Store Purchase Transactions.
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  (a)  Find the frequent item sets with minsup = 0.90 and then find 
 association rules with minconf = 0.90.

  (b)  Find the frequent item sets with minsup = 0.10 and then find 
 association rules with minconf = 0.90.

17.  Consider the table in Problem 16. Find all association rules that indi-
cate the likelihood of items being purchased on the same date by the 
same customer, with minsup = 0.10 and minconf = 0.70.

18. Operationally define support and confidence for an association rule.

19. Can we use association rules for prediction?



C H A P T E R8
CLUSTER VALIDITY

8.1 INTRODUCTION

Once the final clustering has been obtained the major step to cluster 
analysis begins. Are the points within clusters representative in reality? Do 
the between cluster distances reflect the actual situation in reality? What is 
needed is an objective means, not subjective, to determine the accuracy and 
validity of the final clustering chosen in a study. Internal indices  measure the 
inter-cluster validity and external indices measure the intra-cluster validity. 
Additionally, when real data sets are readily accessible then the  validity in-
dices can be subjected to statistical testing. Monte Carlo analysis, studies 
based upon the application being run on randomly generated data, can be 
employed when real data sets are not accessible.

In This Chapter

8.1 Introduction

8.2 Statistical Tests

8.3 Monte Carlo Analysis

8.4 Indices of Cluster Validity

8.5 Summary

8.6 Exercises
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Besides concentrating on validation, a cluster analysis should emphasize 
the stability of the results, as is needed for nearest neighbor and  furthest 
neighbor hierarchical clustering. Stability of the results can be accom-
plished by adding new patterns or removing some features and repeating 
the clustering method. The resulting clustering and the modified clustering 
will then need to be compared.

Sometimes the investigator needs to determine which of a set of cluster-
ing best fits the data. Indices of this type are referred to as relative indices.

8.2 STATISTICAL TESTS

Hypothesis testing is the third estimation procedure presented, in ad-
dition to point estimation and interval estimation. In hypothesis testing, we 
pose two mutually exclusive statements, or hypotheses, about a population 
parameter, then develop a decision rule, which is a procedure based on one 
or more statistics of a random sample that will determine which of the two 
hypotheses we should accept as true.

We will use examples to illustrate the basic process for testing hypoth-
eses. In hypothesis testing, two mutually exclusive hypotheses are given. 
The null hypothesis (designated H

0
) states the status quo, the condition the 

researcher usually wishes to disprove, while the alternative hypothesis (H
a
) 

is generally what the researcher wishes to show, that is, what will be true if 
conditions have changed.

Example 1

Suppose that drug A has been used to treat a particular disease. A group 
of medical researchers develops drug B, which they hope will be more use-
ful in combating the disease, but before it can be commonly used, the re-
searchers must demonstrate that their new medicine is more effective than 
drug A. They will conduct an experiment to evaluate the two treatments, 
and will perform a hypothesis test.

Solution:

In the drug example, the hypotheses are these:

H
0
: Drug A is at least as effective as drug B.

H
a
: Drug B is more effective than drug A.
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Hypothesis testing is a conservative process, based on the presumption 
that H

0
 is true. The researcher hopes to reject H

0
 and accept H

a
 on the 

basis of experimental (sample) evidence, but if H
0
 is not decisively shown 

to be true, then the researcher fails to reject H
0
, and no definite conclusion 

is reached.

What is needed is a procedure for deciding between the null and al-
ternative hypotheses, a well-defined rule by which the decision, based on 
sample information, can be made. Consider another example.

Example 2

A manufacturer of TVs has been producing a 19-inch tube that has an 
expected life of 3,100 hours, with a standard deviation of 450 hours. An en-
gineer suggests a modification that she believes will increase the lifetimes 
of such TVs. To test her hypothesis, she tests a sample of 100 TVs built with 
the modification, and finds that the sample has a mean lifetime of 3,225 
hours. Is this convincing evidence that the modification should be incor-
porated in all the company�s picture tubes? Does it demonstrably extend 
expected tube life?

Solution:

The hypotheses being tested are:

H
0
: The modification causes no improvement.

H
a
: The modification extends the TV life.

Rephrasing these in terms of a parameter, the population mean,

H
0
: µ ≤ 3100

H
a
: µ > 3100

where µ is the expected lifetime of picture tubes incorporating the modi-
fication. Recall that the expected life of TVs without the modification was 
3,100 hours.

The engineer must decide whether to reject H
0
 and accept H

a
 (con-

clude that the modification is effective) or to not reject H
0
 (conclude that 

lifetimes of the TVs incorporating the modification are no longer than those 
of the original design).

Hypothesis testing leads to four possible situations, as shown in Figure 8.1.
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Correct Type I error

Type II error Correct

Decision

State
of

Reality

Do not Reject the
Null Hypothesis

Reject the
Null Hypothesis

Null
Hypothesis

True

Null
Hypothesis

False

FIGURE 8.1 Outcomes of a Hypothesis Test.

Failing to reject H
0
 when H

0
 is true and rejecting H

0
 when it is false are 

correct decisions. The other two possibilities represent errors. Rejecting 
the null hypothesis when it is, in fact, true is a Type I error, while failing to 
reject a false null hypothesis is a Type II error. In Example 2, a Type I error 
is committed if the engineer concludes that the modification is effective in 
prolonging tube life when it is not, and a Type II error is committed if the 
engineer fails to conclude that the modification is effective when, in fact, 
it is not.

The Type I error is generally more serious. In Example 2, it might re-
sult in spending time and money to incorporate an ineffective modification, 
so hypothesis tests are constructed to control the probability of a Type I 
error. This probability is indicated by �. In solving Example 2, we construct 
a rule by which we can decide if µ is greater than 3,100. We have seen the 
utility of estimating µ with the sample mean X, so we will be convinced to 
reject the null hypothesis and accept the alternative if X  is big enough, but 
how big is big enough? Because we also want to control � = P(Type I error), 
the probability that H

0
 is rejected when it is true, consider the sampling 

distribution of X  if H
0
 is true, as shown in Figure 8.2.

If H
0
 is true, then µ = 3,100, and we know from the central limit theo-

rem that the sampling distribution of X  is approximately normal with mean 
3,100 and standard deviation 450 100 . Choose a value for �, say 5%, and 
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cut off an area of size � in the upper tail of the graph of this distribution. 
Consider the value X

�
 that marks off its lower edge.

If H
0
 is true, the probability that X  will be greater than X

�
 is �, which 

we have chosen to be only 5%, so if the observed value of X  is greater than 
X

�
, we can reject H

0
 and accept H

a
, concluding that the modification ex-

tends tube life, with only 5% probability of making a Type I error. We need 

only find the value of X
�
:

� = P(Type I error) = P(Reject H
0
 | H

0
)

= P( X X�
�

| H
0
) = 5% = 0.05

 → P
X X�

�
�

=












=
3100

450 100

3100

450 100
3100 0 05

∗

� .

 → P 5Z
X

�
�
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�

3100

450 100
0 0.

 → P 450
3100

450 100
0� �

�







 �Z

X
�

.

 →
X

�
�

=
3100

450 100
1 645.

 → X
�

� � �31 1 645 3174 2500
450

100
0. . .

This value completes construction of the decision rule:

If the sample mean X  is greater than X
�
≅  3174, then we reject H

0
 and 

accept H
a
. If X  < ( X

∗
≅ 3174), we cannot reject H

a
.

X
– under H0

X
–*3100

�

FIGURE 8.2 Sampling Distribution of X Given that H
0
 is True.
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The probability � is called the significance level of the test, and X
�
 is 

the critical value. Because our conclusion will be determined by the value 
of X, the sample mean is called the test statistic. The interval above the 
critical value in this upper-tail test is called the region of rejection, because 

we reject H
0
 when X falls in this region, while the interval below X

∗
 is 

called the region of acceptance, or the area where we fail to reject.

In her examination of the 100 tubes made with the modification, the 
engineer found that X = 3225, which is greater than the critical value of 
3174. According to the decision rule, she can reject H

0
 at the 5% level  

of significance and conclude that the modification does extend the  expected 
life of picture tubes.

In general, suppose we take a sample of size n > 30 to perform an 
upper-tail test of the form

H
0
: µ ≤ µ

0

H
a
: µ > µ

0
.

We choose the significance level �, and must find the critical value X
∗
 

around which to build the decision rule. If H
0
 is true, the distribution of 

the sample mean X  is approximately normal with mean µ and standard 
deviation � n , where � is the population standard deviation and n is the 
sample size. Then

� = P(Type I error) = P(Reject H
0
 | H

0
) = P( X X�

�

)

P H P
X

n

X

n
Z

X

n

�
�

�











= → �
�







 =

�

�

�

�
�

�

�
�

0 0
0

0

∗ ∗

→
�

=
X

n
z

∗
�

�
�

0 .

Where z
�
, called the critical normal deviate, is chosen so that P(Z > z

�
) = �. 

Then X z n
∗
� � � �� �0 0 .

If X X�
�

, we reject H
0
 and accept H

a
. If X X�

�

, we fail to reject H
0
, 

and no conclusion is reached, as shown in Figure 8.3.
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Region of acceptance Region of rejection

Z

�

= P(reject H0|H0)

X
–* = +�0 n

�

�X
– under H0

�

FIGURE 8.3 An Upper-Tail Hypothesis Test for µ.

If the population standard deviation is unknown, as it often is in sam-
pling situations, the standard sample standard deviation is used instead of 

�. Then X z s n
∗
� � � ��0 0 .

The decision rule for this kind of hypothesis test can be phrased in two 

different but equivalent ways. First, notice that if X X z n� � � � �
�

� �0 0 , 

then 
X

n
z

�
�

�

�
�

0 . That is, we can compare the value of the normal deviate 

X

n

� �

�

0  to the critical normal deviate, as shown in Figure 8.4.

0

Region of acceptance Region of rejection

Z

X
–

 – if H0 is trueZ��� 0

�

�

�

n��

FIGURE 8.4 Regions of Rejection and Acceptance [Fail to Reject].

If 
X

n
z

�
�

�

�
�

0 , reject H
0
 and accept H

a
.
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If 
X

n
z

�
�

�

�
�

0
, do not reject H

0
.

In Example 2, � = 5% so z
�
 = 1.645.

X

n

�
�

�
� �

�

�

0 3225 3100

450 100
2 78 1 645. . .

As before, we conclude that the engineer should reject the null hypoth-
esis and conclude that the modification does increase expected tube life.

The second way to phrase the decision rule compares the area under 

the graph of the distribution of X  when H
0
 is true above the observed value 

of X  to the significance level of �. If this area is less than �, then X  itself 

must be above the critical value X
∗
, and we reject H

0
; if the area above the 

observed value of X  is greater than �, then X  must be below X
∗
, and we 

cannot reject H
0
, as shown in Figure 8.5. The area above X o, the observed 

value of X, is P |HX X o�� �0 .

X
–

 under H0

X
–*

X
–

0 = observed value of X
–

  

�0

FIGURE 8.5 One-Tail Probability.

Again looking at Example 2, � = 5% = 0.05, and the observed value of 

X  was X o = 3225. Then

P 3225|H P H( )X
X

� �
−

�
−







0 0

3100

450 100

3225 3100

450 100

=P(Z > 22.78) = 0.5000 � 0.4973 = 0.0027.

0.0027 < 0.05 = �, so we reject H
0
.
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The value P |HX X o�� �0  is sometimes called a one-tail probability. 

Note that this is the probability of a value of X  at least as extreme as the 
observed value that will occur if H

0
 is true.

Other forms of hypothesis tests are possible. We can perform lower-tail 
or two-tail tests with the population mean µ, as well as tests involving other 
population parameters. All statistical tests of hypotheses, however, will con-
tain these elements:

�� A formal statement of the null and alternative hypotheses, H
0
 and H

a

�� A test statistic and its sampling distribution

�� A chosen level of significance, �

�� A decision rule that defines the critical value(s) of the test statistic and 
the regions of acceptance and rejection

�� A random sample from which to obtain the observed value of the test 
statistic

We have seen that the decision rule of a hypothesis test is developed to 
correspond to our choice of the significance level, the probability of a Type 
I error. We determine, and keep small, the probability of rejecting the null 
hypothesis when it is true. Suppose, however, that we fail to reject H

0
. How 

much confidence can we have that we have not committed a Type II error? 
We must investigate �, the probability of failing to reject the null hypothesis 
when it is false.

Reconsider Example 2, in which the engineer hopes to demonstrate, 
using a sample size of 100, that a modification to her company�s 19-inch pic-
ture tubes will increase their expected life beyond 3,100 hours. The popula-
tion standard deviation is 450 hours and the hypotheses, to be tested at the 
5% significance level, are these:

H
0
: µ ≤ 3100

H
a
: µ > 3100.

The critical value of this test is

X
∗

� � �3100 1 645
450

100
3174. ,
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and the decision rule is:

If X > 3174, reject H
0
 and accept H

a
;

If X < 3174, do not reject H
0
.

Suppose that the expected lifetime of tubes incorporating the modifica-
tion is 3,200 hours. Then µ = 3200, H

0
 is false, and H

a
 is true. In this situ-

ation, the sampling distribution of X  is approximately normal with mean 

3200 and standard deviation 450 100, and the probability of a Type II 
error, or failing to conclude that H

0
 is false even though H

a
 is true (since  

µ = 3200), is:

� = P(Type II error) = P( X < 3174|H
z
 with µ = 3200)

=
�

�
�

�
�

�
�

�

�
�P H with  32z

X 3200

450 100

3174 3200

450 100
00�

=P(Z < �0.58) = 0.5000 � 0.2190 = 0.2810.

That is, if the true mean lifetime of tubes incorporating the new process 
is 3,200 hours, the probability that our test will nonetheless fail to reject H

0
 

is 28.10%. This probability is represented graphically in Figure 8.6 as the 

area under the curve of the distribution of X  if  µ = 3200. Note that 3200 
is to the left of X

∗
= 3174.

3100 3200

�
�

X
–*

X under Ha with    = 3200 
–X

–
under H0 �

FIGURE 8.6 Comparison of H
0
 Distribution to an Alternative Distribution.

In general, for an upper-tail test of this kind,

β µ µ
µ

σ
� � � � �

��

�
�

�

�
�P X X Z

X

n
a

a( | )
�

�

H with Pa
,

where µ
a
 is a possible value of µ for which H

0
 is false and H

a
 is true.
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It is important to observe that the value of � depends on the true value 
of the population mean µ, which is also the center of the distribution of X .  
If µ is, in fact 3125,

� = P(Type II error) = P( X  < 3174|H
z
 with µ = 3125)

=
�

�
�

�
�

�
�

�

�
�P H with 3125z

X 3125

450 100

3174 3125

450 100
�

= P(Z < �1.00) = 0.5000 – 0.3621 = 0.8621.

If the true mean is 3,125, the probability that we will mistakenly fail to 
reject H

0
 is 86.21%, as shown in Figure 8.7.

3100 3125

�

�

X
–*

X
–

 under Ha with � = 3125
X
–
 under H0

FIGURE 8.7 Failure to Reject H
0
.

There is a value of � corresponding to every possible value of µ for which 
H

0
 is false. Because there are an infinite number of such values, it would be 

futile to attempt to calculate them all. We can, however, represent graphi-
cally the relationship between P(Accept H

0
) and all possible values of µ.

If µ = 3100, then H
0
 is true, and P(Accept H

0
|H

0
) = 1 � P(Reject 

H
0
|H

0
) = 1 � � = 0.95. Calculations like these fill in the rest of Table 8.1, 

which shows the representative values of µ.

µ P(Accept H
0
)

3100 0.9500

3125 0.8621

3150 0.7019

3174 0.5000

3200 0.2810

3225 0.1292

3250 0.0455

TABLE 8.1 Representative Values of µ.
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Note that if µ = X
�
, that is, if the population mean is equal to the critical 

value, the value of � is 0.5000.

From these values, we draw Figure 8.8 relating P(Accept H
0
) to pos-

sible values of µ. It is called the operating characteristic curve or OC curve 
for the test, and at each possible value of µ except 3,100 (where H

0
 is true), 

the height of the graph is the probability of a Type II error, �. The OC curve 
always begins at the point (µ

0
, 1��), where µ

0
, is the null hypothesis value of 

µ, and passes through the point ( X
∗
, 0.5).

X*–

1

0.8

0.4

0.6

0.2P
(A

cc
ep

t 
H

0
)

0
3100 3150 3200 3250

�

��= 0.8621
��= 0.7019

��= 0.5000
��= 0.2810

��= 0.1292
��= 0.0455

FIGURE 8.8 Operating Characteristic Curve.

Used as often as the operating characteristic curve is the power curve, 
which plots 1 � � = P(Reject H

0
) against possible values of µ, as shown in 

Figure 8.9.

X*–

1

0.8
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3100 3150 3200 3250 �

��= 0.95451 –
��= 0.87081 –

��= 0.71901 –
��= 0.50001 –

��= 0.29811 –
��= 0.13791 –

FIGURE 8.9 Power Curve.

Note that the curve begins at the point (µ
0
, �), also passes through  

( X
∗
, 0.5), and contains the same information as the operating characteristic 

curve.

The graphs in Figures 8.8 and 8.9 tell us the probabilities of accepting 
or rejecting the null hypothesis for all possible values of µ; they tell us how 
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likely it is that our test will distinguish between µ
0
 (3,100 in Example 2) and 

other possible values of µ.

These curves can also be used to illustrate how a test is affected by 
changes in significance level or sample size. For example, in an upper-tail 
test for µ of the type we have been considering, an increase in the signifi-
cance level � will shift the starting point of the OC curve down and that of 
the power curve up, and will decrease the critical normal deviate z

�
 so that 

X z n
�

� �� �
�0  also decreases.

In Figure 8.10, the OC curve is moved down and the power curve up. 
That is, if the significance level is increased, the probability of a Type II 
error, �, is decreased. Conversely, decreasing � increases �. Again, we en-
counter a trade-off, like that between certainty and precision in confidence 
intervals.
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Power
Curve1–
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��
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0
)

�0
�0

FIGURE 8.10 Effects on the OC and Power Curves of Increasing �.

With confidence intervals, we found that we could improve certainty 
without degrading precision and, vice versa, by collecting more informa-
tion; that is, by increasing the sample size n. In our upper-tail hypothesis 

test for µ, increasing n will decrease the standard deviation of X, � n,  

and will reduce the critical value X z
n

∗
� ��

�
�0 . The starting points of 

the two curves, (µ
0
, 1� �) and (µ

0
, �), will not be affected, so the curves will 

become steeper as shown in Figure 8.10. Except in a small region near µ
0
, � 

will be reduced without degrading �; for most values of µ above µ
0
, the test 

with larger n is more likely to be accurate.

In general, if the OC and power curves of one test are steeper than 
those of another, we say that the first test is more powerful, or better able to 
distinguish between µ

0
 and other possible values of µ. We can increase the 

power of a test, its ability to distinguish between H
0
 and H

a
, by enlarging 

the sample.
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8.3 MONTE CARLO ANALYSIS

The methodology of simulation, initially used by operations research, 
was created by John von Neumann and Stanislaw Ulam in the late 1940s. 
Since the advent of digital computing, simulation has been used for count-
less business applications. Essentially, simulation is the use of a system 
model that has the desired characteristics of reality in order to reproduce 
the essence of the actual operations. The Monte Carlo method is simulation 
by sampling techniques. It involves determining the probability distribution 
of the variable under consideration and then sampling from this distribu-
tion by means of random numbers to obtain data. In effect, a set of random 
numbers is used to generate a set of values that have the same distributional 
characteristics as the actual experience it is designed to simulate.

In order to perform a Monte Carlo Analysis, we need to examine ran-
dom number generation. One of the key steps in performing a statistical 
analysis for a simulated study is often to have a routine that generates ran-
dom values for variables with a specified random distribution; for example, 
exponential and normal. This is done in two steps. First, a sequence of ran-
dom numbers distributed uniformly between 0 and 1 is obtained. Then the 
sequence is transformed to produce random values satisfying the desired 
distribution. The first step is called random number generation and the 
second, is random variate generation.

Most random number generators are defined as a recursive relation in 
which the next number in the sequence is a function of the last one or two 
numbers. For example,

X Xn n= � ��5 161 mod

defines, starting with X
0
 = 5, the random sequence:

5, 10, 3, 0, 1, 6, 15, 12, 13, 22, 11, 8, 9, 14, 7, 4, 5.

Note that X
1
 = (5(5) + 1)mod 16 = 26 mod 16 = 10. For this random num-

ber generator, all the X
i
 values are integers between 0 and 15. Also take note 

that the sequence regenerates 5. The fact that the number 5 is regenerated 
means the sequence can be regenerated any time provided the starting value 
X

0
 is given. The value that is used to begin the sequence is called the seed.

Given the seed, we can tell with a probability of 1 the numbers in 
the sequence that will be generated, or we say the function represent-
ing the random number generator is deterministic. Yet the numbers to be 
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 discussed are random in the sense that they would pass statistical tests for 
randomness. These numbers are, therefore, only partially random and are 
called pseudorandom numbers.

In our example, only 16 numbers are unique within the sequence, and 
then these 16 numbers are repeated. In other words, this random number 
generator has a cycle length of 16. If a generator does not repeat an initial 
part of the sequence, then that part is referred to as the tail. The period of 
the generator is the sum of the tail length and the cycle length.

The desirable properties for a random number generator are:

�� The related software should execute efficiently.

�� The sequence should possess a large period.

�� The numerical values in the sequence should be independent and 
 uniformly distributed.

The last property requires a battery of statistical tests to validate 
 randomness.

Some of the random number generators commonly used include:

�� Linear congruential generators

�� Extended Fibonacci generators

�� Combined generators

A description of each of these approaches follows.

The residues of successive powers of a number possess good random-
ness properties, where the nth number in the sequence is found by divid-
ing the nth power of an integer a by another integer m and keeping the 
remainder. That is,

X aX mn n= � 1 mod( ).

The parameter a is called the multiplier and m is called the modulus. 
Such generators are referred to as Linear Congruential Generators (LCGs).

In general, the choice of a, b, and m affects the period and autocorrela-
tion in the resultant sequence. Generally,

�� The modulus m should be large.

�� For mod(m) computations to be efficient, m should be a power of 2.
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�� If b is nonzero, the maximum possible period m is obtained when:

m and b are relatively prime (they have no common factors other  
than 1).

Every prime number that is a factor of m is also a factor of a � 1.

a � 1 is a multiple of 4.

Notice that all of these conditions are met if m = 2k, a = 4c + 1, and b is 
odd. It is assumed that c, b, and k are positive integers.

A multiplicative LCG is of the form:

X aX mn n= � 1 mod( ).

Multiplicative LCGs are more efficient than mixed LCGs. Additional 
efficiency can be obtained by choosing m to be a power of 2. However, the 
maximum possible period for a multiplicative LCG with modulus m = 2k is 
only one-fourth the full period possible, that is, 2k � 2. The latter period is 
achieved if the multiplier a is of the form 8i – 3 and the initial seed is an 
odd integer.

A solution to the small period problem is to use a modulus m that is a 
prime number. In this case, with a proper choice of the multiplier a, it is 
possible to get a period of m � 1, which is almost equal to the maximum pos-
sible length m. Notice that unlike a mixed LCG, X

n
 obtained from a mul-

tiplicative LCG can never be 0 if m is prime. The values of X
n
 lie between 

1 and m � 1, and any multiplicative LCG with a period of m � 1 is called a 
full period generator.

Not all values of the multiplier are equally good. It can be shown that 
a multiplicative LCG will be a full period generator if and only if the mul-
tiplier a is a primitive root of the modulus m. By definition, a is a primitive 
root of m if and only if anmod(m) � 1 for n = 1, 2,�, m � 2.

One of the important cautions in implementing LCGs is that the prop-
erties are guaranteed only if the computations are done exactly and without 
any rounding errors. Another problem in implementing LCGs is that the 
product aX

n-1
 can exceed the largest integer allowed on the computer sys-

tem, causing integer overflow.

A Fibonacci sequence {X
n
} is generated by the following relationship:

X X Xn n n� �− −1 2.
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Random numbers can be generated using the Fibonacci sequence in 
this way:

X X X mn n n� �� �� �1 2 mod( ).

However, this sequence does not possess good randomness properties 
as it has a high serial correlation. But the following relationship passes most 
statistical tests for randomness:

X X Xn n n
k� �� �� �5 17 2mod( ).

It is possible to combine two or more random generators to produce a 
�better� generator. The following are three such techniques:

1. Adding random numbers obtained by two or more generators.

 Note that this modification will sometimes increase the period and 
 randomness (L�Ecuyer).1

2. Exclusive: or random numbers obtained by two or more generators 
(Santha and Vazirani).2

3. Shuffle: shuffling is when one sequence is used as an index to decide 
which of several numbers generated by a second sequence should be 
returned (Marsaglia and Bray).3 Algorithm M by Marsaglia and Bray 
uses an array of size 100 that is filled with random numbers from a 
random sequence X

n
. To generate a random number, generate a new Y

n
 

(between 0 and m � 1) and scale it to obtain an index I = 1 + 100 Y
n
/m. 

The value in the ith element of the array is returned as the next random 
number. A new value of X

n
 is generated and stored in the ith location. 

One problem with shuffling is that it is not easy to skip a long subse-
quence as is often required in applications.

1  L�Ecuyer, P. (1988). Efficient and portable combined random number generators. Com-
munications of the ACM, 31, 742-749 and 774.

2  Santha, M., & Vazirani, U. V. (1984). Generating quasi-random sequences from slightly 
random sources. Proceedings 25th Annual Symposium on Foundations of Computer Sci-
ence, 434-440.

3  Marsaglia, G., & Bray, T. A. (1964). A convenient method for generating normal variables. 
SIAM Review, 6, 260-264.
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The following guidelines should be taken into consideration when se-
lecting a seed for a random number generator:

�� Do not use 0. This choice of value would make a multiplicative LCG 
stick at 0.

�� Avoid even values. If you are using a multiplicative LCG, the seed 
should be odd.

�� Do not subdivide one stream. Using a single stream for all variables is 
a common mistake that can result in a strong correlation between the 
variables.

�� Use nonoverlapping streams. If the streams overlap, there will be a 
 correlation between the streams, and the resulting sequences will not  
be independent.

�� Reuse seeds in successive replications.

�� Do not use random seeds. This causes two problems: First, the results 
are difficult to reproduce; and, second, it is not possible to guarantee 
that the multiple streams will not overlap.

The following are some common misconceptions about random num-
ber generation:

�� A complex set of operations leads to a random number.

�� A single test such as the chi-square test is sufficient to test the goodness 
of fit for a random number generator.

Note that the sequence 0, 1, 0, 1, 0, 1,�, 0, 1 will pass the chi-square 
test, but clearly the sequence is not random (a pattern is present).

�� Random numbers are unpredictable. LCGs are deterministic.

�� Some seeds are better than others. In general, generators whose period 
or randomness depends upon the seed should not be used, because an 
unsuspecting user may not remember to follow the guidelines.

�� Accurate implementation is not important. The period and randomness 
properties of generators are guaranteed only if the generation formula is 
accurately implemented without any overflow or truncation.

�� Bits of successive words generated by a random number generator 
are equally randomly distributed. There are a number of methods 
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to  generate nonuniform variables. For a particular distribution, one 
method may be more efficient than the others. In this chapter, some of 
the commonly used methods are described.

We will look at four methods for generating nonuniform variables: in-
verse transformation, rejection, composition, and convolution. These meth-
ods assume that we have already generated a sequence of random numbers 
distributed uniformly between 0 and 1.

Suppose we want to generate random values from A to B from a  uniform 
distribution defined over [A, B]. We recall that the cumulative distribution 
function (CDF) in this case is monotonically increasing and continuous 
over the interval and is defined as:

P x
x A

B A
( ) ,=

�

�
for A ≤ x ≤ B.

Then in the inverse method of set r, a uniform value defined on [0, 1], 
equal to P(x), giving:

r P x
x A

B A
= =

�

�
( ) .

Because the cumulative distribution function is one to one, onto and 
continuous on [A, B], then the inverse function for P(x) exists. This �invers-
ing� of variables gives the inverse method its name.

r
x A

B A
=

�

�
then

x = A + r(B � A).

The final equation is easy to use as a process generator for the uniform 
distribution. Given values for the parameters (A and B) and a random num-
ber on [0, 1], a sampled value (a variate) is obtained by substituting the 
appropriate values into the last equation. For example, if the distribution 
of interest is uniformly distributed with a lower limit of 5 and an upper 
limit of 10 and the random number 0.75 is generated, the sampled value 
would be

x = 5 + 0.75(10 � 5)

= 8.75.

Consider the need to sample a value from the negative exponential dis-
tribution. The first step is using the inverse transformation method to ob-
tain the cumulative distribution function, which we know is:

P(x) = 1 � e� ��x.
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Next, the uniform random number r is set equal to P(x), and the expres-
sion is manipulated to express x as a function of r:

r = P(x) = 1 � e� ��x

e� ��x = 1 � r.

Taking natural logarithms of each side, we get

���x = ln(1 � r)

x
r

=
� �ln( )

.
1

�

The latter equation is our random variate generator for the negative 
exponential distribution. Given a mean number of occurrences and a uni-
form random number, the number of intervals before the next occurrence 
is easily simulated. Keep in mind, however, that the sampled value is mea-
sured in intervals and must usually be transformed into minutes, hours, or 
whatever the appropriate unit of measurement may be before it becomes 
useful in an application. For example, if � = 1 occurrence 5 minutes and r = 
0.40, the sampled value is:

X =
�

=
ln( . )

. .
0 6

1
0 52

Measured in minutes, this is (0.51 intervals)∗(5 minutes/interval) =  
2.55 minutes.

A rejection technique can be used if another density function, the Prob-
ability Density Function (pdf), g(x) exists so that cg(x) majorizes the density 
function f(x); that is, cg(x) � f(x) for all values of x. If such a function can be 
found, then the following steps can be used to generate the random variate 
x with density f(x):

1. Generate x with pdf g(x).

2. Generate y uniform on [0, cg(x)].

3. If y � f(x), then output x and return. Otherwise, repeat from 1.

The algorithm continues rejecting the random variates x and y until the 
condition y � f(x) is satisfied; hence, the name for the method.

Consider the problem of sampling values from a normally distributed 
random distribution. The inverse function does not exist; therefore the 
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 inverse transformation method does not meet our needs. However, the re-
jection method does solve the problem. In fact, this method works for any 
continuous distribution.

First, enclose the continuous distribution in a rectangle, letting a 
rectangular distribution majorize the continuous distribution. Because 
the standard normal distribution is asyptomatic to the z-axis, it is neces-
sary to truncate the distribution at some reasonable point, as shown in 
Figure 8.11.

.4

–5 = 0

e– 2

Z
+5�

 = 1

p(Z) =

p(
x) Z2

2

σ

π

FIGURE 8.11 The Majorizing of the Standard 
 Normal Distribution.

Points that are five standard deviations from the mean are chosen as 
the truncation points. The maximum height of the curve is 0.3989. Conse-
quently, a rectangle with a height of 0.40 includes the entire distribution.

The next step is to randomly select a Z value between +5 and �5.

Z = �5 + 10r
1
.

After the Z value has been randomly selected, it is inserted in the equa-
tion for the standard normal distribution to determine if the height of the 
curve is at that point. Then a second random number is generated. It is 
transformed, using the uniform process generator, so that it randomly se-
lects a point along the height of the rectangle.

H = 0.4r
2
.

Now comes the rejection part of the algorithm. If the value of H falls 
below the computed height of the curve at the randomly selected Z value, 
the Z value is treated as if it comes from the standard normal distribution. If, 
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 however, the value of H falls above the curve, the Z value under  consideration 
is rejected and the process is repeated until an appropriate value is found.

The composition method can be used if the desired Cumulative Dis-
tribution Function (CDF) can be expressed as a weighted sum of n other 
CDFs. That is,

F( ) ( )x p F xi i
i

n

=
=
�

1

where, p pi i
i

n

� �
�

�0 1
1

, ,  and the F
i
(x)�s are distribution functions. The  

technique can also be used if the density function f(x) can be expressed as a 
similar weighted sum of n other density functions.

In either case, the steps to generate x are as follows:

1. Generate a random integer where

P(I = i) � p
i

This can easily be done using the inverse transformation method.

2. Generate x with the ith f
i
(x) and return.

The pdf for a Laplace distribution is a composition of two exponential 
pdfs. Figure 8.12 illustrates the Laplace distribution given by the pdf:
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�1

2
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a = 2
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f (
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FIGURE 8.12 Laplace Density Function.
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The probability of x being positive is half, and the probability of x being 
negative is half.

By the composition technique, Laplace variates can be generated in the 
following way:

1. Generate two uniform (0, 1) values r
1
 and r

2
.

2. If r
1
 < 0.5, return x = �aln(r

2
); otherwise, return x = aln(r

2
).

The convolution method can be used if the random variable x can be 
expressed as a sum of n random variables y

1
, y

2
,�, y

n
 that can be easily 

generated; that is,

x = y
1
 + y

2
 + � + y

n
.

Notice the difference between composition and convolution. The for-
mer method is used when the pdf or CDF can be expressed as a sum of 
other pdfs or CDFs. The latter technique is used when the random variable 
itself can be expressed as a sum of other random variables. The following 
list of examples illustrate this summation process:

�� A binomial variate with parameters n and p is a sum of n Bernoulli 
 variates with success probability p.

�� The chi-square distribution with υ degrees of freedom is a sum of 
squares of υ unit normal N(0,1) variates.

�� The sum of a �large� number of variates from any distribution has a 
normal distribution.

�� The sum of two uniform variates has a triangular density.

Reconsider the normal distribution. Begin by obtaining 12 uniformly 
distributed variates, computing their sum, and then subtracting 6:

( ) .ri
i

�
�

� 6
1

12

Mathematically these sample sums are normally distributed with a 
mean of 0 and a standard deviation of 1:

�� � � �0 50 12 6 0. ( )

�� � � � �1 12 12 1S .
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Depending on mathematical skills, the derivation processes dis-
cussed in this chapter may or may not have been easy to follow. In most 
 instances, however, knowledge of the final result of the derivation is all 
that is  needed.

In almost all our work, we have paid careful attention to the shapes of 
population distributions in assessing the applicability of statistical analyses 
and tests. For example, to apply a t-test when using small samples, we must 
establish the normality of the underlying population(s); in linear regression, 
we assume normality and homoscedasticity. That is, our tests thus far have 
been parametric, depending on the characteristics of the underlying distri-
butions. In this chapter, we examine tests for randomness and goodness-
of-fit.

We sometimes wish to determine if a sequence of values is random, 
with no pattern or relationship among the values, as if each had been cho-
sen at random from some range of values, or is not random, by showing 
some pattern. Such investigations take the form of hypothesis tests with 
these hypotheses:

H
0
: The values are random.

H
a
: The values are not random.

The decision rule may be formulated in a variety of ways, of which we 
will examine four.

The Frequency Test

Suppose that a sequence of n values is to be chosen, at random and one 
at a time, from a list of k candidate values. At each selection of a random 
value to be included in the sequence, each candidate value has probability 
k�1 of being selected. The number of times a given value appears has the 
binomial distribution b(n, k�1), with mean nk�1 = n/k; we would expect each 
of the candidate values to appear in the sequence of n selected values ap-
proximately n/k times, if the selection at each step is in fact random. Signifi-
cant deviations of observed frequencies of the values from the predicted 
frequencies would suggest that the values are not random, but that some 
values are more likely than others.

Consider the �Chi-Square Tests of Goodness-of-Fit and Missing Data,� 
tests based on a statistic with a chi-square distribution to compare predict-
ed and observed frequencies.
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If the null hypothesis is true and the values are truly random, then the 
statistic

χ
2

2

1

2

1

=
�

� �
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where O
i
 is the observed frequency of each value, has a chi-square distribu-

tion with k � 1 degrees of freedom.

If the value of the chi-square statistic is near 0, the observed and ex-
pected frequencies must be similar, and we cannot conclude that the values 
are not random. If χ2 is large, the observed and expected frequencies must 
differ, and the values are not random. We may use the chi-square table in 
the usual way to find the critical value of the chi-square statistic above which 
we may reject H

0
 and accept H

a
, concluding that the values are not random.

For example, consider this list of 50 digits from 0 to 4:

4 3 2 3 3 2 2 1 3 1 1 0 2 0 2 1 3 0

1 4 0 0 1 4 0 2 3 2 1 1 0 2 3 4 0 0

2 4 4 2 2 1 4 4 0 3 1 1 2 1

At the 5% significance level, we test the null hypothesis that these val-
ues are random against the alternative that they are not.

The digits are selected from a list of five possible values�0, 1, 2, 3, and 
4�so k = 5, while n = 50. Corresponding to k � 1 = 4 degrees of freedom, 
the critical value is χ2 = 9.488.

Each expected frequency is 50∗‰ = 10, while the five observed frequen-
cies are

O
0
=10; O

1
=12; O

2
=12; O

3
=8; O

4
=8.

The value of the chi-square statistic is

χ
2 2

0

4

2 2 2 2

5

50
10

1

10
10 10 12 10 12 10 8 10

= ( )

( ) ( ) ( ) ( )

Oi
i

�

� � � � � � � � �

=
�

(( )

.

8 10

1

10
0 4 4 4 4

16

10
1 6

2� ��

= � � � �� �

= =
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This value is less than the critical value, so we do not reject the null 
hypothesis; we cannot conclude that these values were randomly selected.

Run this problem in Excel, by simply entering the data in cells A1 
through A50 and then enter the associated formulas shown in Table 8.2.

Values Ob Freq Ex Freq Diff Diff ^ 2

0 =COUNTIF($A$1:$A$50,E7) 10 =F7–G7 =H7*H7

1 =COUNTIF($A$1:$A$50,E8) 10 =F8–G8 =H8*H8

2 =COUNTIF($A$1:$A$50,E9) 10 =F9–G9 =H9*H9

3 =COUNTIF($A$1:$A$50,E10) 10 =F10–G10 =H10*H10

4 =COUNTIF($A$1:$A$50,E11) 10 =F11–G11 =H11*H11

chi-sq= =(1/10)*SUM(I7:I11)

TABLE 8.2 Excel Functions to Construct a Chi-Square Test.

The following function in Excel provides the calculation of the prob-
ability of a value occurring at the 5% significance level:

prob=   =CHIDIST(1.6,4)

This generates the data found in Table 8.3.

Values Ob Freq Ex Freq Diff Diff ^ 2

0 10 10 0 0

1 12 10 2 4

2 12 10 2 4

3  8 10 –2 4

4  8 10 –2 4

chi-sq= 1.6

TABLE 8.3 Data File for a Goodness-of-Fit Test.

Then complete the analysis as done above. Also note that this is con-
firmed with the following probability, which is greater than α = 0.05:

prob=   0.80879

The Gap Test

A gap in a sequence of random numbers is the number of values between 
two identical values. For example, in the sequence 6, 5, 3, 2, 3, 6, 1,�, there 
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is a gap of length 4 between the first and second occurrence of the digit 6, 
and a gap of length 1 between the first and second 3. In a sequence of digits 
chosen randomly from a set of k candidate values, the length of a gap after a 
given value is a random variable X with probability function

f P( ) ( ) , , , ,x X x
k k

x
x

= = � �






=1
1 1

0 1 2 @

That is, a gap of length x occurs after a particular value γ  when the next  
x values are not γ, and the (x+ 1)st value is γ. This occurs with probability

1
1 1

�



k k

x

.

If a sequence of random values contains N gaps, the expected number 
of gaps of length x is:

N x N
k k

x

� � ��
��

�
��

f ( ) .1
1 1

To investigate the randomness of the sequence, we can compare the 
expected and observed numbers of gaps of each length using the chi-square 
statistic as in the frequency test. The associated number of degrees of free-
dom will be one less than the number of gaps considered.

Consider again the sequence of 50 digits from 0 to 4 tested in the pre-
vious section. There are N = 45 gaps in the sequence, where values were 
chosen from the digits 0, 1, 2, 3, and 4. Because the probability of a gap of, 
say, length 2 is

1
1

5

1

5

16

125
0 28

2

�





= = . ,

the expected number of gaps of length 2 is

16

125
45 5 76� � . .

Finding the other expected gap frequencies in the same way, and count-
ing the observed numbers of gaps, we obtain Table 8.4.
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Digits Gap

Length 0 1 2 3 4 Expected Observed

0 2 3 2 1 2 10 9.0

1 1 2 1 1  5 7.2

2 1 1 2  4 5.76

3 3 1 1 1 3  9 4.61

4 2 1  3 3.69

5 1 1 2 1  5 2.94

6  0 2.36

7 1 1  2 1.89

8 1  1 1.51

9 1  1 1.21

10 1 1  2 0.97

11 1  1 0.77

12 1  1 0.62

13  0 0.49

14  0 0.40

15  0 0.32

16  0 0.25

17  0 0.20

18 1  1 0.10

45

TABLE 8.4 The Gap Test of Randomness.

We now compute the chi-square statistic to test the null hypothesis that 
the sequence of values is random against the alternative that it is not:

χ
2

2

0

18 2 2 210 9 0

9 0

5 7 2

7 2

1 0 16

0
=

�
�

�
�

�
� �

�

�
�

( ) ( . )

.

( . )

.

( . )

.

O E

E
i i

ii

@
116

17 114= . .

Corresponding to 19 � 1 = 18 degrees of freedom, the value of χ0 05
2
.  is 

28.9. The value of the chi-square is less than this critical value, so again we 
cannot reject the null hypothesis that a given sequence of values is random 
at the 5% significance level.

Excel contains no procedure that performs the gap test.
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The Poker Test

Consider the question: �What is the probability that a five-card poker 
hand will contain two of a kind?� We can think of generating a random 
sequence of numbers as dealing from an infinite, well-shuffled deck, and 
apply reasoning similar to that of the card problems to develop another test 
of randomness.

Given a sequence that we wish to test for randomness, we break up 
the sequence into 5-tuples, and use a chi-square statistic to compare the 
expected and observed frequencies of particular types of �hands�: two of a 
kind, three of a kind, two pair, etc. Because our �deck� is essentially infinite, 
finding the probabilities of the types of hands will differ from the card ex-
amples, as shown in this redo of the first example in this chapter.

Broken into 5-tuples, the sequence of numbers is this:

(4 3 2 3 3)(2 2 1 3 1)(1 0 2 0 2)(1 3 0 1 4)

(0 0 1 4 0)(2 3 2 1 1)(0 2 3 4 0)(0 2 4 4 2)

(2 1 4 4 0)(3 1 1 2 1)

When selecting digits randomly from the five alternatives (0, 1, 2, 3, 
and 4), the probability that an arbitrary 5-tuple will contain exactly one pair 
of identical values is:

1
1

5

4

5

3

5

2

5

5

2

4 5

5 2 3

48

125
0 384

4
� � � � �







= = =
! !

! !
. .

There are ten 5-tuples in the sequence, so the expected number of 
hands containing exactly one pair of values is 10*0.384 = 3.84. Similar cal-
culations, and counting the occurrences of the various arrangements, yield 
Table 8.5.

Frequencies

“Hand” Probability Expected Observed

One Pair 0.384 3.84 3

Two Pair 0.288 2.88 4

Three of a Kind 0.192 1.92 3

Full House 0.064 0.64 0

Four of a Kind 0.032 3.32 0

TABLE 8.5 Poker Test Data File.
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We find the value of the chi-square statistic in the usual way:

χ
2

2 2

1

5 2 23 3 84

3 84

4 2 88

2 88

3 1 92

1
=

�
�

�
�

�
�

�

�
�

( ) ( . )

.

( . )

.

( . )

.

O E

E
i i

ii 992

0 0 64

0 64

0 0 32

0 32
2 036

2 2

�
�

�
�

�
( . )

.

( . )

.
. .

The associated number of degrees of freedom is one less than the num-
ber of �hands� considered. In this case, that value is 5 � 1 = 4, and the value 

of χ0 05
2
.  is then 9.488. The observed value of the chi-square statistic is less 

than this critical value, so we cannot conclude at the 5% significance level 
that the sequence is not random.

Again, this is not a test that Excel supports.

The Runs Test

If a group of 12 men and women form a line in this order:

F F F F F F M M M M M M

we would conclude immediately that their arrangement is not random, as 
we would if this arrangement were observed:

M F M F M F M F M F M F.

Sequences composed of only two types of symbols can be tested for 
randomness by counting the number of runs, or sequences of the same 
symbol, in the entire sequence. For example, the sequence

0 0 1 1 1 0 1

contains a run of two, a run of three, and two runs of one for a total of four 
runs.

If the number of runs in a sequence is small, lack of randomness through 
clustering is indicated, as in the first example above, while mixing�the sec-
ond example�is reflected in too many runs. Because randomness may fail 
for either of these two mutually exclusive reasons, and the number of runs 
distinguishes them, we can perform a two-sided test for randomness or ei-
ther of two one-sided tests.

Two-sided test:

H
0
: The sequence is random.

H
a
: The sequence is not random.
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One-sided tests:

lower-tail

H
0
: The sequence is random.

H
a
: The sequence tends to cluster.

upper-tail

H
0
: The sequence is random.

H
a
: The sequence tends to mix.

A sequence to be tested consists of n
1
 symbols of one type and n

2
 sym-

bols of a second; the number of possible runs has a minimum of 2 and a 
maximum of 2n

1
 if n

1
 = n

2
 or 2n

1
 + 1 if n

1
 < n

2
. Critical values for the number 

of runs, found in standard statistical critical value tables, which ordinarily 
provide critical values of the two-sided test at the 5% significance level (or 
the one-sided tests at α = 2.5%) for n

1
 and n

2
 ≤ 20.

For example, this sequence of binary digits contains six runs and is 
composed of n

1
 = 10 0s and n

2
 = 12 1s.

0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1

The critical values for the two-sided test at the 5% significance level are 
7 and 17; the observed number of runs is less than 7, so we conclude that 
the sequence is not random.

More strongly, because the number of runs is less than the critical value 
for the lower-tail test at the 2.5% significance level, we conclude that the 
sequence tends to cluster.

As N increases, the sampling distribution of U, the number of runs, 
approaches the normal distribution with mean �U n n N� �1 2 1 2( )/  and 
 standard deviation

S
n n n n N

N NU =
�

�

�

�
�

�

�
�

2 2

1
1 2 1 2

2

1 2
( )

( )
.

/

The critical values of U for the two-sided test at the α significance  
level are:

U z SU U
∗

�� �� / .2
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Runs Above and Below a Central Value

A sequence whose entries take on more than two values may be test-
ed for randomness with a runs test in two different ways. In the first, a 
dichotomy is imposed on the values in the sequence by creating a new 
sequence whose entries reflect whether each entry in the original se-
quence is above (A) or below (B) some central value in the population 
from which the original entries were selected, typically the mean or me-
dian. The sequence of A�s and B�s can be tested with the runs already 
given. Such a test is said to be based on runs above and below the mean 
or median.

For example, to test this sequence of 20 digits from 0 to 9, we create the 
corresponding sequence of symbols A and B depending on whether each 
entry in the sequence is above or below the population median of 4.5:

3 4 4 1 8 0 1 0 9 5 7 6 8 2 5 9 3 0 8 7

B B B B A B B B A A A A A B A A B B A A

There are eight runs in the sequence of 10 A�s and 10 B�s; the critical 
values for the two-sided test at the 5% significance level are 6 and 16. The 
observed number of runs lies between the critical values, so we cannot con-
clude that the original sequence is not random.

Again, this is not a test that Excel supports.

Runs Up and Down

In dichotomizing a sequence, as was done in the previous section, infor-
mation about the sequence is inevitably lost. Some of this can be preserved 
by considering not runs above and below a value, but directional runs, or 
runs up and down. Again, we create a new sequence of symbols from the 
original sequence, but here, every entry except the first receives a + or 
a � depending on whether the entry is greater or less than its predecessor. 
The runs test is then applied to the sequence of +s and �s. (If any entry 
replicates its predecessor, a 0 is entered. Zeroes are ignored in creating and 
counting runs.)

Applying this technique to the previous example, we generate this se-
quence of +s and �s:

3 4 4 1 8 0 1 0 9 5 7 6 8 2 5 9 3 0 8 7

+ 0 � + � + � + � + � + � + + � � + � --



Cluster Validity  211

In the sequence of nine +s and nine �s, we find U = 16 runs. Using a 
standard table for the U statistic the critical values for the two-sided test at 
α = 5% are 5 and 15. U is not between these critical values, so we can con-
clude from this test that the original sequence of values is not random. In 
particular, because U is greater than the upper critical value, we can conclude 
that the sequence is not random because the direction changes too often.

This procedure is not performed by Excel.

The Kolmogorov Goodness-of-Fit Test

One of the many applications of the chi-square distribution is the good-
ness-of-fit test, which is used to investigate whether a set of values might 
have come from a specified distribution. Another technique, developed by 
the Russian mathematician, A.N. Kolmogorov, tests for goodness-of-fit by 
comparing the empirical cumulative distribution function (CDF) with the 
hypothesized CDF, using the largest absolute difference of the two func-
tions as the test statistic, usually called D. As with the chi-square test, the 
null hypothesis is that the values come from the proposed distribution, 
while the alternative is that they come from some other distribution.

The value of the cumulative empirical distribution at any data point x is

S x
N x

N
( )

( )
,=

where N(x) is the number of values less than or equal to x, and N is the total 
number of data values.

Two important observations should be made about the Kolmogorov 
test. First, the distribution of the test statistic D is not dependent on the 
nature of the underlying population distribution. Second, while the chi-
square test of goodness-of-fit requires grouping possible values of a con-
tinuous distribution into classes, no such grouping is required here. Thus, it 
can be argued that the Kolmogorov test is better suited to situations involv-
ing continuous distributions.

The Kolmogorov-Smirnov Two-Sample Test

In a procedure very much like the Kolmogorov test, we can examine 
whether two independent samples might have come from identical distri-
butions. This test was developed by another Russian, N.V. Smirnov, and 
generally carries the names of both men.



212  Cluster Analysis and Data Mining

Given two independent samples, we construct the two empirical cu-
mulative distribution functions S

1
(x) and S

2
(x), and use the statistic D = 

maximum S x S x1 2( ) ( )�  to test the hypotheses:

H
0
: The samples come from identical populations.

H
a
: The populations are not identical.

The calculation of D is more straightforward than in the Kolmogorov 
one-sample test.

Hubert’s Γ Statistic

Hubert�s Γ statistic is useful for assessing fit between data and expect-
ant structures. Hubert & Schultz4 provide an overview of the statistic com-
plete with examples.

Let A = [x(i,j)] and B = [y(i,j)] care two n × n proximity matrices on the 
same set of n objects. Let

y i j
if object i and have the same category label

if not
( , )

,

,
.=

�
�
�

0

1

The Hubert Γ statistic is the point serial correlation between the two 
proximity matrices in normalized form:

� �
� ��

�

�� X i j Y i j
j i

n

i

n
( , ) ( , ).

11

1

Let m
x
 and m

y
 be the sample means and s

x
 and s

y
 be the sample stan-

dard deviations of the values in the matrices A and B. Then
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−

∑∑
1

11

1

M
X i j m Y i j m sx yj i

n

i

n

x( , ) ( , ) ssy

where M = n(n � 1)/2 is the number of entries and:

 
m M X i jx = ��( / ) ( , )1

 
m M Y i jy = ��( / ) ( , )1

 
s M X i j mx x

2 2 21� ���( / ) ( , )
 

s M Y i j my x
2 2 21� ���( / ) ( , )

all sums are over the set {(i,j): 1 ≤ i ≤ n � 1; i + 1 ≤ j ≤ n.

4  Hubert, L. J. and Schultz, J. (1976). Quadratic assignment as a general data-analysis strat-
egy. British Journal of Mathematical and Statistical Psychology 29, 190-241.
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8.4 INDICES OF CLUSTER VALIDITY

An external validity index is a measure addressing the situation where 
the classification for the set of objects already exists and the measurement 
taken is the degree to which the clustering method generates a cluster-
ing matching the original classification scheme. For example, consider the 
problem of determining whether or not a hierarchical clustering obtained 
in a cluster analysis for a specific data set matches an expected hierarchi-
cal clustering. Because this requires that in a hypothesis test that the null 
distribution is dependent on a number of factors (number of objects, type 
of population, type of hierarchical clustering method employed, etc.), then 
the expected hierarchy usually is not accessible. As a result, the need to 
acquire external indices is rare. Therefore this topic is not discussed at this 
time and the interested reader should do a research study on this topic.

Another manner in which to validate results is to measure the degree to 
which a partition obtained from a clustering method is justified by the given 
proximity matrix. Using only the data, an internal validity index measures 
the fitness of the clustering structure with respect to the data. A determina-
tion of whether or not a hierarchical clustering matches an expected hierar-
chical clustering needs to be computed. Both hierarchies can be expressed 
as proximity matrices. The expected hierarchy is a dissimilarity matrix in 
which the entry in row i and column j is k if the objects j and i are expected 
to be first in the same cluster at level k of the hierarchy, which is available 
in the hierarchy�s dendrogram. The captured hierarchical clustering can be 
represented by cophenetic proximity matrix.

Let {C
1
, C

2
,�, C

n
} be a hierarchical clustering where C

n
 contains n � m 

clusters and L, whose value is in the dendrogram, is a level function which 
is set equal to the proximity at which each clustering is formed.

L(m) = min {d(x
i
, x

j
): C

m
 is defined.}

The cophenetic proximity measure

d
C
(i,j) = L(k

ij
)

where

k
ij
 = min {m : (x

i
,x

j
): C

mq
 for some q.

The cophenetic matrix contains cell values of d
c
(i,j). The nearest neigh-

bor and farthest neighbor generate the same dendrogram when the cluster-
ings are derived from a cophenetic proximity matrix.
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A product-moment correlation coefficient, called the cophenetic cor-
relation coefficient, CC, can be employed to determine the correlation 
 between the cophenetic and the hierarchy�s proximity matrix. This is a 
symmetrical matrix, therefore, only the upper triangle of m = n(n � 1)/2 
needs to be posted for use in the computation of the cophenetic correlation 
 coefficient.

CC =
� � �

� � ��� �� � �
�

�
1

1 12 1 2

/ ( , ) ( , ) ( )

/ ( , ) /

M d i j d i j m m

M d i j m M d

C D C

D C(( , )i j mC
2 1 2

��� ���

where m M d i j m M d i jD D C= � � � �� �1 1( , ), ( , ),  and all sums are over the 

set {(i,j): 1 ≤ i < j ≤ n}.

The value of the CC is between �1 and 1, with 1 representing a perfect 
positive match.

A means for determining the internal validity is to run a Monte Carlo  
study as outlined by Jain & Dubes,5 as is the material on the cophe-
netic matrix and correlation coefficient. The following algorithm is from  
page 168.

ALGORITHM FOR BASELINE DISTRIBUTION OF 7 UNDER 
RANDOM GRAPH HYPOTHESIS

 Step 1. For fixed n (number of objects) form a dissimilarity matrix 
under the random graph hypothesis; that is, fill in the n(n – 1) 
12 entries with a randomly chosen permutation of the integers from  
1 to n(n � l)/2.

 Step 2. Cluster the n objects by a clustering method, such as the single-
link or complete-link method.

 Step 3. Form the cophenetic matrices for the dendrogram resulting 
from the clustering method.

 Step 4. Compute y between the dissimilarity and cophenetic matrices.

5  Jain, A. K. & Dubes, B. C. (1988). Algorithms for clustering data. Englewood Cliffs, NJ: 
Prentice Hall.
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 Repeat Steps 1 to 4 on a Monte Carlo basis to create a baseline distri-
bution for �y specific to the clustering method and value of n. Hubert6 
used 1,000 trials for each value of n.

Often in cluster analysis the investigator needs to decide which is the 
�best� clustering among a set of captured clusterings. How well any of the 
clusterings fits the data is not being considered, but, rather, consider which 
member of the collection of clusterings fits the data the best. A relative 
validity index enables an investigator to answer this question.

Rand7 was one of the first to develop a measure of similarity between 
two clusterings (Y & Y′) of the same data. He based his statistic on three 
assumptions.

First, clustering is discrete in the sense that every point is unequiv-
ocably assigned to a specific cluster. Second, clusters are defined 
just as much by those points which they do not contain as by those 
points which they do contain. Third, all points are of equal impor-
tance in the determination of clusterings (p. 847).

From these assumptions, it follows that a basic unit of comparison be-
tween two clusterings is how pairs of points are placed. There are four pos-
sibilities (types): (a) the pair is placed in the same cluster for both methods; 
(b) the pair is placed in the same cluster by one method (Y) and different 
clusters by the second method (Y1); (c) the pair is placed in the same cluster 
by the second method (Y1) and different clusters by the first method (Y); 
and (d) the pair is placed in different clusters by both methods. Cases (a) and 
(d) above represent similarity between the clusterings and cases (b) and (c) 
represent dissimilarity. Rand�s measure of similarity, c(Y, Y′), can be defined 
as the number of similar assignments of point-pairs normalized by the total 
number of point-pairs. More specifically, given N points (X

1
, X

2
, . . . , X

N
) and 

two clusterings of them Y = {Y
1
,..., Y

K1
} and Y1 = {Y

1′
,...,Y

K2′
}, by definition

c Y Y( , ) ,� �




�� Y

N
Ciji j

N

2 1

6  Hubert, J. (1974). Approximate evaluation techniques for the single-link and complete-
link hierarchical clustering structures. Journal of the American Statistical Association, 69, 
698-704.

7  Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of 
the American Statistical Association, 66, 845-850.
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where

Y
ij
 = 1 if there exist K and K′ such that both x

i
 and x

j
 are in both Y

K
 and Y

K′
.

=  1 if there exist K and K′ such that x
i
 is in both Y

K
 and Y′

K
, while x

j
 is in 

 neither Y
K
 or Y′

K

= 0 otherwise, and 
a

b
 represents the usual binomial coefficient.

Unfortunately, the Rand index has been shown to have some unde-
sirable properties. For example, the index approaches its upper bound 
of 1 as the number of clusters increases without limit (Milligan, Soon, & 
 Sokol).8 The index also fails to take into account chance agreement (Morey 
& Agresti).9 Using a Monte Carlo approach (Milligan and Schilling),10 and 
(Milligan, Soon, and Sokol)2,8 compared four external criterion measures 
under a number of different conditions. The four methods were the Rand,1 
the adjusted Rand (Morey and Agresti),3 the Jaccard and the Fowlkes and 
Mallows11 statistic, reported in Milligan & Shilling.4 Based on the four pos-
sibilities mentioned above (a, b, c, and d), the following four equalities will 
be used to define the four measures:

a � � � �
�� N

Nijji

2

2 2
.. ,

b � �� ��N N
ii

ijji
2 2

2 2 ,

c
N Njj ijji� �

� ��2 2

2 2 ,

 8  Milligan, G. W., Soon, T., & Sokol, L. (1983). The effect of cluster size, dimensionality and 
the number of clusters on recovery of the cluster structure. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 5, 40-47.

 9  Morey, L., & Agresti, A. (1984). The measurement of classification agreement: An adjust-
ment to the Rand statistic for chance agreement. Educational and Psychological Measure-
ment, 44, 33-37.

10  Milligan, G. W., & Schilling, D. A. (1985). Asymptotic and finite sample of error perturba-
tion on fifteen clustering algorithms. Psychometrida, 45(3), 325-342.

11  Fowlkes, E. F., & Mallows, C. L. (1983). Rejoinder. Journal of the American Statistical 
Association, 78, 584.
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d � � � � � �
�� � �N

N
N Nijji ij ji

2 2 2

2 2 2 2
.. ,

where N
ij
 is the number of points in cluster i as produced by the first algo-

rithm which is also in cluster j of the second algorithm (or the true criterion 
solution). Also N

i
, N

j
, and N.. represent the marginal and grand totals. The 

four statistics can now be defined as follows:

Rand: [a + d]/[a + b + c + d]

Adjusted Rand: [a + d � Nc]/[a + b + c + d � Nc]

Jaccard: [a]/[a + b + c]

Fowlkes and Mallows: [a]/[(a + b)(a + c)]1/2

where Nc is defined as follows:

N N

N
N N N Ni jji ii

jj. .
.. ..

..
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1
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. C2

The results of both studies indicated that the Jaccard and the adjusted 
Rand performed superior to the other measures. Milligan and Schilling4 
concluded by saying that �When selecting indices for future research, it 
would seem reasonable to use the adjusted Rand and Jaccard measures. 
The enhanced variability and sensitivity of the two statistics seems to pro-
vide the best characteristics for the measurement of cluster recovery�  
(p. 108).

Hubert and Arabic12 derive a different correction for chance for the 
Rand statistic than the adjusted Rand (Morey & Agresti).3 They state that 
�Probably the most obvious (null) model for randomness assumes that the 
R × C contingency table is constructed from the generalized hypergeo-
metric distributions, i.e., the U and V [Y and Y1 in our case] partitions are 
picked at random, subject to having the original number of classes and ob-
jects in each. Under the hypergeometric assumption, we can show:

E
n n n n

C
ij

i j

i

i

j

j2 2 2 2 3,

. . ..
� � �







=

12 Hubert, L., & Arabic, P. (1985). Comparing Partitions. Journal of Classification, 2, 193-218.



218  Cluster Analysis and Data Mining

where 
a

b
 represents the usual binomial coefficient. In equation C3 and 

subsequent equations, the a corresponds to the n
ij
s and its variations and 

the b corresponds to the 2s. In this notation n
ij
 is equivalent to N

ij
 of the pre-

vious equations. The same is true for the marginals n
i.
 and n

.j
 N.. is equiva-

lent to n, the grand total (n). Equation C3 gives the expected number of 
object pairs of type (a), i.e., pairs in which the objects are placed in the 
same cluster in Y and in the same cluster in Y′. The value to the right of the 
equal sign is the number of distinct pairs that can be constructed within 
rows, times the number of distinct pairs that can be formed from columns, 
divided by the total number of pairs.

They go on to show that the Rand measure has expectation:

E A C
n n n n n n ni j i j

j i ji2
2

2 2 2 2 2 2

2

4







� � � �� � �� , ( )

where A is equal to (a) + (d) from the four types listed above, i.e., the total 
number of agreements. By using the general form of an index corrected for 
chance, which is given by:

(Index � Expected Index)/(Maximum Index � Expected Index), (C
5
)

and is bounded above by 1 and takes on the value of 0 when the index 
equals its expected value, the corrected Rand index would have the form 
(assuming a maximum Rand index of 1):

n n n

n n n n n

n

C

ij i j

i j i j

ij ji

i j ji

2 2 2 2

1

2

2 2 2 2 2

=

� �
�
�
�

��

�
�
�

��

� ��

� � �� ( 66 )

Hubert and Arabic conclude the section by saying �as defined, the 
Morey-Agresti correction inappropriately assumes that the expectation of 
a squared random variable is the square of the expectation. Specifically, 
Morey and Agresti assert that

E n n n n Cijij i jij

2 2 2 2
7� �� � � , ( ),

whereas our equation C3 could be rewritten to show

E n n n n n n n n n n Cijij i jij i jji

2 2 2 2 2 2
81 1 1� � ��� � � � � � � �� � �( ( ) ( ) ( ). ( ))
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In general, equation C8 is larger than equation C7 and the positive dif-
ference of

1

12

2 2 2 2
9n n

n n n n Cii jj( )
, ( )

�
�

�
�

�

�
� �� � �� �� �

is not necessarily small, depending on the sizes of the object sets and associ-
ated partitions being compared� (p. 200). Hubert and Arabic went on to give 
a brief example of the differences between the three different Rand indexes.

8.5 SUMMARY

�� Determining the validity of a clustering is basically a statistical problem.

�� Seldom does the investigator have full knowledge for the required base-
line distribution, for determining the validity of a clustering or when 
comparing clustering structures, and therefore, the baseline distribution 
must be implemented by Monte Carlo methods.

�� An external validity index is used to determine a clustering structure 
against expectant information.

�� An internal validity index uses only the proximity matrix for the cluster-
ing and information from the cluster analysis to determine the validity  
of the clustering.

�� A relative validity index compares two clustering methods.

�� The validation of clustering structures is vital to the formalization and 
strengthening of the results of cluster analysis studies. Rather than sim-
ply being an art, the validation is a step toward enabling cluster analysis 
to become a science.

8.6 EXERCISES

1. We will take a sample of size 80 from a population whose standard de-
viation we know to be 56 and test these hypotheses:

H
0
: µ ≤ 300

H
a
: µ > 300

 a.  At the 5% significance level, find the critical value and state the 
decision rule.
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 b.  For these possible values of µ, find the probability of a Type II error: 
305, 300, 315, 320.

 c.  Use the values found in part b to sketch the operating characteristic 
and power curves of the test.

 d.  Find the critical value corresponding to α = 1%, restate the decision 
rule, and find � if µ = 315. What generalizations does this suggest 
about � and ��?

 e.  In the original test, X = 312. What conclusion is reached? What 
type of error might have been made?

 f.  Perform the test in part e again by comparing the z statistic to the 
critical normal deviate, then by comparing the probability that X  
would be at least as large as its observed value with �.

2. Show that for any upper-tail test of the population mean, the value of � 
if � =

�
X  is 0.5000.

3. What factors influence the power of a test of hypotheses?

4. Use the following data from an American Cities database to test the 
claim that construction in U.S. cities was up by more than 5% at the  
5% significance level:

Variablex7 Change in Construction Activity

Mean    5.523 Std err  1.081 Std dev   9.301

Variance   86.517 Kurtosis  1.947 Skewness    .924

Minimum  –15.400 Maximum 40.600 Sum 408.700

C.V.Pct  168.414 .95 C.I.  3.368 To   7.678

Valid cases 74 Missing cases 0

TABLE 8.6 Descriptive Statistics for Change in Construction Activity.

 a.  Formally state the hypotheses and determine the decision rule.

 b.  If construction activity has in fact increased by 5.5%, find the prob-
ability that we will fail to reject H

0
. Illustrate by drawing the distri-

bution of X  if µ = 5.5% and indicate the area �.

 c. Sketch the OC and power curves for this test.

 d.  Use the decision rule to come to a conclusion. What type of error 
might have been made?
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 5. Show that for any lower-tail test of hypotheses for µ, � is 0.50000 if � =
�

X .

 6. Find z
�/2

 for � = 1%, 2%, 5%, and 10%.

 7. A table of random numbers contains 15,050 digits, which should have 
been chosen at random from the digits 0 through 9. The following table 
gives the frequencies of each digit in the table. At the 5% significance 
level, should it be concluded from this data that the table is not random?

Digit 0 1 2 3 4 5 6 7 8 9

Frequency 1493 1491 1461 1552 1494 1454 1613 1491 1482 1519

 8. Use the constant multiplier technique with K = 6787 and X
0
 = 4129 to 

obtain a sequence of three four-digit random numbers.

 9. Let a sequence of random numbers (R
1
, R

2
, R

3
, R

4
, R

5
) be 0.45, 0.37, 

0.89, 0.11, and 0.66. Extend the sequence through R
10

 using the addi-
tive congruential method, where m = 100.

10. Determine whether the historical linear congruential generators 
shown below can achieve a maximum period. Conduct an Internet 
search. Also, state restrictions on X

0
 to obtain this period.

 a.  In SIMSCRIPT for CDC; a = 2,814,749,767,109;  
c = 59,482,661,568,369; m = 248

 b. IBM 360; a = 69,019; c = 0; m = 233

 c. a = 6507; c = 0; m = 1024

11. Use the mixed congruential method to generate a sequence of three 
two-digit random numbers with X

0
 = 37, a = 7, c = 29, and m = 100.

12. Use the mixed congruential method to generate a sequence of three 
two-digit random integers between 0 and 24 with X

0
 = 13, a = 9, and  

c = 35.

13. Consider the multiplicative congruential generator under the following 
circumstances:

 a. a = 11, m = 16, X
0
 = 7

 b. a = 11, m = 16, X
0
 = 8

 c. a = 7, m = 16, X
0
 = 7

 d. a = 7, m = 16, X
0
 = 8
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 Generate enough values in each case to complete a cycle. What infer-
ences can be drawn? Is maximum period achieved?

14. Generate five random observations from a uniform distribution be-
tween �10 and +40.

15. Suppose that random observations are needed from the triangular 
distribution whose probability density function is

f ( )
,

,
x

x if x

otherwise
=

� ��

�
�
2 0 1

0

 a.  Derive an expression for each random observation as a function of 
the random decimal number r.

 b.  Generate five random observations.

16. Apply the randomness test of runs above and below the median to this 
sequence of 15 values, using the 5% significance level:

22, 2, 4, 12, 11, 15, 28, �5, 8, 4, �1, �10, �2, 25, 7

17. A programmer has developed a batch of 14 programs, some of which 
contain bugs. This sequence shows which contain bugs and which  
do not:

B B NB NB NB B NB NB NB NB B NB B B

 At the 5% significance level, are the programs randomly arranged with 
respect to containing bugs? (Use the runs test.)

18. Apply the test of runs up and down to this sequence, at the 5% 
 significance level:

2 4 8 2 9 4 0 7 2 5

7 5 9 0 7 7 5 9 6 0

19. Apply the gap test of randomness to this sequence, chosen from the 
digits, 0, 1, 2, and 3. Use the 10% significance level.

1 0 1 1 1 1 2 0 0 3

3 1 3 1 1 0 0 0 0 2

20. This sequence was selected from the digits 0 through 9. Apply the 
poker test of randomness to it at the 5% significance level.
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1 0 0 9 7

7 6 5 2 0

3 4 6 7 3

8 0 9 5 9

3 9 2 9 2

3 2 5 3 3

1 3 5 8 6

5 4 8 7 6

0 9 1 1 7

7 4 9 4 5

TABLE 8.7 Hypothetical Poker Test 
Data.

21. A sequence of 60 values is chosen from a distribution purported to be 
the discrete uniform on {0, 1,..., 9}. These frequencies are observed:

Digit 0 1 2 3 4 5 6 7

Frequency 9 10 4 2 3 5 1 7 11

 a.  Test the assertion of randomness from {0, 1,..., 9} with the chi-
square goodness-of-fit test at the 5% significance level.

 b.  Perform the test in part a using the Kolmogorov test at the 5% 
significance level. Is this test appropriate here?

22. Employees at two computer centers are categorized in five job classifi-
cations as shown in Table 8.8.

Systems 
Engineers

Systems  
Analysts

Systems 
Programmers 

Applications 
Programmers Operators

Center A 2 0 12 14 2

Center B 4 9 18 22 7

TABLE 8.8 Computer Store Center Personnel Data.

 Using the Kolmogorov-Smirnov two-sample test, can it be concluded 
at the 5% significance level that jobs are distributed differently in the 
two centers?
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23. Table 8.9 lists the thousands of kilometers of railroad track available 
in North and Central America and in South America. Use the Mann-
Whitney test at the 5% significance level to test whether the mean 
length of track is the same in the two regions.

Group 1: North and 
Central America 1,000 km

Group 2: South 
America 11,000 km

Canada  70.1 Argentina 40.2

Costa Rica   0.6 Bolivia  3.4

Cuba  14.5 Brazil 23.9

El Salvador   0.6 Chile  9.0

Guatemala   0.8 Colombia  3.4

Honduras   1.1 Ecuador  1.1

Mexico  19.2 Paraguay  0.5

Nicaragua   0.3 Peru  2.1

Panama   0.7 Uruguay  3.0

United States 332.8 Venezuela  2.0

TABLE 8.9 North Versus South Railway.

24. Perform the test of problem 4 using a t-test for independent samples. 
Which test is more appropriate here? Why?

25. A computer center director and a senior programmer each rated a 
group of 16 junior programmers on their software documentation 
skills. The ratings are provided in Table 8.10.

Junior Programmers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Director 4 4 5 5 3 2 5 3 1 5 5 5 4 5 5 5

Senior 
Programmer 

2 3 3 3 3 3 3 3 2 3 2 2 5 2 5 3

TABLE 8.10 Ratings of Junior Programmers Software Documentation Skills.

 Use the Wilcoxon matched-pairs signed-rank test at the 5% signifi-
cance level to test for a difference in the average rating by these two 
individuals.
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26. a.  Perform the test in exercise 6 using the t-test for matched-pairs.

 b.  What assumption does the Wilcoxon test make about the 
 underlying distributions?

 c.  In the Wilcoxon test, pairs that tie are discarded. What is the 
 problem with this procedure? Suggest an alternate procedure.

 d.  Is the Wilcoxon test or the t-test more appropriate to the data in 
problem 6?

27. Twenty-three C# programmers are randomly assigned to three study 
groups. The groups are given a programming assignment. Group 1 was 
told to use a nonstructured, bottom-up approach, Group 2 was to use a 
structured, top-down approach, and Group 3 was given no specific in-
structions. The times in hours required by each individual to complete 
the project are shown in Table 8.11.

Times in Hours

Group 1 9 8 8 6 5 4 4 4

Group 2 6 6 5 4 4 3 2 2

Group 3 8 8 7 7 7 6 5

TABLE 8.11 Group Project Completion Times.

 Use the Kruskal-Wallis test at the 5% significance level to decide if the 
average time varied over the three groups.

28. a.  Perform the test in problem 27 using one-way analysis of variance.

 b.  What assumptions required by analysis of variance need not be 
satisfied when using the Kruskal-Wallis test?

 c.  How is the Kruskal-Wallis test affected by a large number of ties?

29. Sixteen software packages were ranked by two computer centers as 
shown in Table 8.12:

Package

A B C D E F G H I J K L M N O P

Center 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Center 2 2 1 8 6 4 3 11 14 9 5 12 7 15 16 10 13

TABLE 8.12 Computer Center Software Package Ratings.



226  Cluster Analysis and Data Mining

 a.  Calculate the Spearman rank correlation coefficient for this data. 
At a = 5%, is it significant?

 b.  Calculate the Pearson product-moment correlation coefficient for 
the given values.

30. RiskAMP is a full-featured Monte Carlo simulation engine for Excel. 
With this add-in, you can add Risk Analysis to your spreadsheet models 
quickly and easily. Visit the following Website to download RiskAMP: 
http://www.riskamp.com/home?gclid=CJTx6YDXrp0CFYNX2god 
GkRAyw.

31. Using the add-in from problem 30, calculate the time it takes to com-
mute from home to the office. Suppose your commute to work consists 
of the following:

Drive 2 miles on a highway, with 90% probability you will be able to 
average 65 MPH the whole way, but with a 10% probability that a 
traffic jam will result in average speed of 20 MPH.

Come to an intersection with a traffic light that is red for 90 seconds, 
then green for 30 seconds.

Travel 2 more miles on a surface street, averaging 30 MPH with a 
standard deviation of 10 MPH.

You want to know how much time to allow for your commute in or-
der to have a 75% probability of arriving at work on time. Additionally, 
when you have an important meeting, you want to know how early you 
need to leave the house in order to have a 99.5% probability of arriving 
on time.

32. Look up the following articles and write a literature review for each 
article:

Hertz13 article discusses the application of Monte Carlo methods to 
corporate finance.

The paper by Boyle14 pioneered the use of simulation in derivative 
valuation.

13  Hertz, D. B. (January-February, (1964). Risk analysis in capital investment. Harvard Busi-
ness Review, 95-106.

14  Boyle, P. (May, 1977). Options: a Monte Carlo approach. Journal of Financial Economics, 
323-338.
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33. Using the Neymann-Scott cluster generation program listing in 
 Appendix C design and implement a Monte Carlo study to evaluate 
the effect of neighborhood shape has on a specific type of hierarchical 
clustering.

34. Perform a Monte Carlo study of the K-means clustering method on 
different sizes of clusters.

35. Perform a Monte Carlo study of the fuzzy c-means clustering method 
on different sizes of clusters.

36. Perform a Monte Carlo study of the K-means clustering method on 
different density functions.

37. Perform a Monte Carlo study of the fuzzy c-means clustering method 
on different sizes of clusters.

38. Perform a Monte Carlo study of the K-means clustering method where 
outliers are present.

39. Given the following ordinal proximity matrix:

2 3 4 5

1 4 6 1 5

2 8 9 3

3 7 10

4 2

TABLE 8.13 Ordinal Proximity Matrix.

 First generate the single-link and complete-link dendrograms. Use 
these dendrograms to compute the cophenetic correlation coefficient 
value and interpret the result.

40. Use the Neymann-Scott cluster generation program listing in Ap-
pendix C to generate an expectant clustering of objects. Generate a 
hierarchical clustering using the Ward method on the same data set. 
Use Hubert�s Γ statistic for assessing the fit between the data set and 
the expectant structure.
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41. Use the Neymann-Scott cluster generation program listing in Ap-
pendix C to generate an expectant clustering of objects. Generate two 
distinct hierarchical clusterings on the same data set. Use Rand and 
Corrected Rand statistics for comparing the two hierarchies.

42. Use the Neymann-Scott cluster generation program listing in Appen-
dix C to generate an expectant clustering of objects. Generate both a 
K-means and a fuzzy c-means clusterings on the same data set. Use 
Rand and Corrected Rand statistics for comparing the two clusterings.



C H A P T E R9
CLUSTERING CATEGORICAL DATA

9.1 INTRODUC TION

In the previous chapters, the clustering methods discussed were built 
on a foundation of a similarity measure or a distance metric. This founda-
tion necessitates that the data set be at least ordinal data. When dealing pri-
marily with numerical data, such as in statistical studies, many metrics are 
usually available. Databases, on the other hand, often contain categorical 
data. Due to the lack of an order being present, a distance measure cannot 
be defined for categorical data.

Reconsider the weather data set in Table 9.1.

In This Chapter

9.1 Introduction

9.2 ROCK

9.3 STIRR

9.4 CACTUS

9.5 CLICK

9.6 Summary

9.7 Exercises
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Day Outlook Temperature Humidity Wind Play

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal Weak Yes

D6 Rain Cool Normal Strong No

D7 Overcast Cool Normal Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

TABLE 9.1 Weather Data Set.

How can the distance between a �rain, mild, high� tuple and another 
tuple that is �sunny, cool, normal� be defined? The following major cate-
gorical data clustering algorithms that have resolved this question: ROCK,1 
STIRR,2 CACTUS,3 and CLICK.4

A common feature of these algorithms is that they model the similar-
ity of categorical attributes. All of these methods operationally define the 
tuples as similar if the items with which they simultaneously occur are large. 

1  Guha, S., Rajeev, R., & Shim, K. (March, 1999). ROCK: A robust clustering method for 
categorical attributes. Proceedings of the IEEE International Conference on Data Engi-
neering, Sydney, 512-521.

2  Gibson, D., Kleinberg, J., & Raghavan. (1998). Clustering categorical data: an approach 
based on dynamical systems. In Proceedings of the 24th VLDB Conference, New York, 
USA, 311-322.

3  Ganti, V., Gehrke, J., & Ramakrishnan, P. (1999). CACTUS: Clustering categorical data 
using summaries. In Proceedings of ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Diego, CA, USA, 73-83.

4  Peters, M. and Zaki, M. J. (2004). CLICK: Clustering Categorical Data using K-partite 
Maximal Cliques, In IEEE International Conference on Data Engineering. IEEE.
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Links and neighbors are used for the items in ROCK, where two items have 
a link if they have a common neighbor. A weighted node with the weights 
of simultaneous items being propagated, in STIRR, has two items shar-
ing common simultaneous occurring items exhibiting similar magnitude of 
weights. Both CACTUS and CLICK also employ occurrences as the basis 
for operationally defining similarity.

Huge data sets, found in databases, are worthless unless one can extract 
useful information and understand the hidden meaning in the data. There-
fore, there exists a need to extract information that can support business 
decisions. More important is to understand the rules that have generated 
those data. There can be hidden patterns and trends that, if uncovered, can 
be used in many different areas.

ROCK is a hierarchical algorithm that can be applied to categorical 
data. It relies on a distance metric that can be changed to accommodate any 
new data and scalable for accommodating with very large databases.

STIRR is an approach based on an iterative method for assigning and 
propagating weights on the categorical values in a table that can be studied 
analytically in terms of certain types of nonlinear dynamical systems. The 
algorithm represents each attribute value as a weighted vertex in a graph. 
Starting the initial conditions, the system is iterated until a �fixed point� is 
reached. When the fixed point is reached, the weights in one or more of the 
�basins� isolate two groups of attribute values on each attribute.

9.2 ROCK

ROCK (RObust Clustering using linKs) is an agglomerative hierar-
chical clustering method based upon the concept of links. The number of 
neighbors that two tuples have, in the data set, is set equal to the number  
of links between the two tuples. Initially, the algorithm determines the 
number of links between every pair of tuples in the data set. Then an 
 agglomerative hierarchical clustering process, starting with singleton clus-
ters of tuples, is performed on the data set using a goodness measure for 
merging tuples. The termination for the process is either to stop at a prede-
termined number of clusters of tuples or when no links remain between the 
clusters of tuples. ROCK partitions the whole data set based on a sample of 
tuples drawn from the whole data set.
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The ROCK algorithm will be illustrated for the weather data set, which 
has the following categorical variables each with a listing of their value sets:

Outlook: (sunny, overcast, rainy)

Windy: (true, false)

Play: (yes, no)

Temperature and Humidity have real domains. These two attributes 
have been transformed into new categories by partitioning Temperature 
(60 to 64, 65 to 74, 75 to 89, 90 to 100) as �cold, mild, warm, hot� and 
Humidity (65 to 74, 75 to 89, 90 to 100) as �normal, soggy, saturated.� This 
generates the revised table illustrated in Table 9.2.

Day Outlook Temperature Humidity Windy Play

D1 Sunny Warm Soggy False No

D2 Sunny Warm Saturated True No

D3 Overcast Warm Soggy False Yes

D4 Rainy Mild Saturated False Yes

D5 Rainy Mild Soggy False Yes

D6 Rainy Cold Normal True No

D7 Overcast Cold Normal True Yes

D8 Sunny Mild Saturated False No

D9 Sunny Mild Normal False Yes

D10 Rainy Warm Soggy False Yes

D11 Sunny Warm Soggy True Yes

D12 Sunny Warm Soggy True Yes

D13 Overcast Mild Saturated True Yes

D14 Overcast Warm Saturated False Yes

D15 Rainy Mild Saturated True No

TABLE 9.2 Revised Weather Data Set Totally Categorical.

The similarity between two tuples in the above table, t
i
 and t

j
 can be 

defined as:

sim(t
i
,t

j
) =

�

�

t t

t t

i j

i j

,
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where t ti j�  = the number of attribute values that are the same in t
i
 and 

t
j
 and t ti j�  = the number of attribute values in t

i
 or t

j
. For example, 

t
1
 ∩ t

4
 = {False} and t

1
 ∪ t

4
 = {Sunny, Rainy, Warm, Mild, Soggy, Saturated, 

No, Yes, False}.

Then sim(t
1
,t

4
) = 1/9.

t
1
 ∩ t

8
 = {Rainy, False, No} and

t
1
 ∪ t

4
 = {Sunny, Warm, Mild, Soggy, Saturated, False, No}

Then sim(t
1
,t

8
) = 3/7.

There is a deficiency in the operation definition for the above formula. 
It assumes that attributes have an equivalent impact on similarity. However, 
if two tuples differ on an attribute having two values then the distance be-
tween them should be different to a higher degree than from the two other 
tuples which differ on an attribute having 100 values. The chances that two 
values are unequal are different for different attributes and are dependent 
upon the cardinality of the respective attribute value sets.

The following definition for similarity resolves the latter deficiency:

sim t t
t t

t t
D

i j

i j

i j
k

k t ti j

, ,� � �
�

� �
� ��2

1

where D
k
 is the domain of an attribute k for which t

i
 and t

j
 have unequal 

values and k ranges over all such attributes for the two tuples. Consider t
1
 

and t
4
 then D

1
 = the domain set for Outlook and |D

1
| = 3; D

2
 = the domain 

set for Temperature and |D
2
| = 4; D

3
 = the domain set for Humidity and 

|D
3
| = 3; and D

4
 = the domain set for Play and |D

4
| = 2.

Then 
1 1

3

1

2

1

4

1

2
19 12

1 4 Dk
k t t� �� � � � � � / , t t1 4�  = 1, and therefore 

sim(t
1
,t

4
) = 6/25.

Consider t
1
 and t

8
, then

D
1
 = the domain set for Temperature and |D

1
| = 4; D

2
 = the domain set 

for Humidity and |D
2
| = 3. Then 

1 1

4

1

3
7 12

1 8 Dk
k t t� �� � � � / , t t1 4�  = 3, 

and therefore sim(t
1
,t

4
) = 18/25.
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Given a threshold, Θ, a value between 0 and 1, and a pair of objects 
T

i
 and T

j
, then t

i
 and t

j
 are neighbors if sim(t

i
,t

j
) � �. For example, let � = 

0.20. Then sim( , )t t1 8

6

25
=  implies that t

1
 and t

4
 are neighbors. Also, sim

( , )t t1 8

18

25
=  implies that t

1
 and t

8
 are neighbors. Next, ROCK requires that 

the similarity of all pairs of tuples be found in order to determine the neigh-
bors for each tuple and then for every pair of tuples find all their common 

neighbors. A sample computation is that sim(t
1
,t

2
) =

� �






3

3 2
1

3

1

2

 = 9/14. 

Using this computation process, the following vectors can be determined:

All sim(t
1
,t

i
) for i = 1 to 15.  For all sim(t

4
,t

i
) for i = 1 to 15.

 

sim(t
1
,t

i
)

t
2

0.64

t
3

0.64

t
4

0.24

t
5

0.48

t
6

0.26

t
7

0.00

t
8

0.72

t
9

0.48

t
10

0.67

t
11

0.44

t
12

0.60

t
13

0.00

t
14

0.52

t
15

0.76    

sim(t
4
,t

i
)

t
1

0.24

t
2

0.24

t
3

0.62

t
5

0.57

t
6

0.264

t
7

0.26

t
8

0.64

t
9

0.69

t
10

0.72

t
11

0.80

t
12

0.80

t
13

0.80

t
14

0.48

t
15

0.58

Therefore t
1
 has neighbors:

t
2
, t

3
, t

4
, t

5
, t

6
, t

7
, t

8
, t

9
, t

10
, t

11
, t

12
, t

13
, t

14
, t

15
.

When considering t
4
 then every tuple is a neighbor of t

4
.

As a result {t
2
, t

3
, t

4
, t

5
, t

6
, t

8
, t

9
, t

10
, t

11
, t

12
, t

14
, t

15
} are common neighbors 

of t
4
 and t

1
.
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A Link(t
i
,t

j
) between the tuples is defined as the number of common 

neighbors between t
i
 and t

j
. A large value for the Link(t

i
,t

j
) indicates that t

i
 

and t
j
 belong to the same cluster. Let D be the set of tuples. The link graph 

L for D is defined to be a graph with D as the set of vertices and with an 
edge between a pair of vertices t

i
 and t

j
 when Link(t

i
,t

j
) � 0.

Selection of the threshold, q, decides the density of the link graph. The 
higher the q value, the sparser the link graph. Then the graph L has a great-
er number of connected components if the q is chosen to be a high value.

Finally, the goodness measure g(C
i
,C

j
) for merging two clusters C

i
, C

j
 

is defined as

g C C
Link C C

n n n n
i j

i j

i j i j

( , )
( , )

( ) ( )
=

� � ��� 
�

� � �1 2 1 2 1 2f( ) f( ) fΘ Θ Θ
,,

where link(C
i
,C

j
) is the sum of the cross links between the tuples in C

i
 and 

C
j
, and f(�) = (1 + �)/(1 � �).

The following explanation of the ROCK algorithm plus the preceding 
operational terms and the actual algorithm are from Dutta, Mahanta, and 
Pujari.5

The ROCK algorithm starts with each cluster being a single data point 
and keeps merging the pair of clusters with the best positive goodness mea-
sure. To determine the pair of clusters (C

i
,C

j
) having the highest goodness 

measure g(C
i
,C

j
), a global heap Q and a local heap q(C

i
) for each cluster C

i
 

are maintained. The local heap q(C
i
) contains each C

j
 with nonzero g(C

i
,C

j
) 

and Q contains each cluster C
i
 with max_g(q(C

i
)), the maximum goodness 

measure in q(C
i
). The merging process is carried out until a specified num-

ber k of clusters remain or until the links between the clusters disappear, 
i.e., max_g(Q) becomes zero. The ROCK algorithm is described below:

Input: A set D of data-points

Number k of clusters to be found

The similarity threshold �

5  Dutta, M., Mahanta, A. K., & Pujari, A. K. (2005). QROCK: A Quick Version of the ROCK 
Algorithm for Clustering of Categorical Data. Pattern Recognition Letters 26,(15), 2364-
1373.
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begin

 compute nbrlist[i] for each i � D using �

 compute the links Link[i, j] for each i, j � D

 for each x � D

  build local heap q(x)

  build global heap Q

 while (size(Q) 
 k and max_g(Q) 
 0)

  {u = extractmax(Q)

  v = max(q(u))

  delete(Q,v)

  w = merge(u,v)

   for each x � q(u) � q(v)

    {link[x,w] = link[x,u] + link[x,v]

    delete(q(x), u);

    delete(q(x), v);

    insert(q(x), w, g(x,w));

    insert(q(w), x, g(x,w));

    update(Q, x, q(x))}

  insert(Q, w, q(w))

  }

 End

FIGURE 9.1 Algorithm ROCK.

9.3 STIRR

STIRR (Sieving Through Iterated Relational Reinforcement) is op-
erationally defined as an iterative algorithm based on nonlinear dynamical 
systems. Let�s start the study of STIRR by operationally defining what is 
meant by a dynamical system.

When using dynamic programming the problem to be solved is  resolved 
by identifying a collection of subproblems and solving them one by one. 
 Answers to these small problems lead from solutions to larger  subproblems, 
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until the all subproblems are solved. Dynamic programming problems have 
an underlying implicit directed graph, where the nodes are the subprob-
lems needed to solve the original problem and graph�s edges are the de-
pendencies between the subproblems. In order to solve subproblem B, we 
need the answer to subproblem A, then there is an edge from A to B. In 
this case, A is thought of as a smaller subproblem than B and it will always 
be smaller.

Dasgupta, Papadimitriou, and Vazirani6 provide the following example 
in Chapter 6 of their textbook:

In the longest increasing subsequence problem, the input is a se-
quence of numbers a

1
, a

2
,�, a

n
. A subsequence is any subset of 

these numbers taken in order, of the form a
i1
, a

i2
,..., a

ik
 where  

1 < i
1
 < i

2
 < ... < i

k
 < n, and an increasing subsequence is one in 

which the numbers are getting strictly larger. The task is to find 
the increasing subsequence of greatest length. For instance, the 
longest increasing subsequence of 5, 2, 8, 6, 3, 6, 9, 7 is 2, 3, 6, 9.

5 2 8 6 3 6 9 7

5 2 8 6 6 9 73

FIGURE 9.2 Increasing Subsequences.

In this example, the arrows denote transitions between consecutive 
 elements of the optimal solution. More generally, to better understand the 
solution space, let�s create a graph of all permissible transitions: establish a 
node i for each element ai, and add directed edges (i, j) whenever it is pos-
sible for a

i
 and a

j
 to be consecutive elements in an increasing subsequence, 

that is, whenever i < j and a
i
 < a

j
 (Figure 9.2).

Notice that: (1) this graph G = (V, E) is a directed graph, because all 
edges (i, j) have i < j, and (2) there is a one-to-one correspondence between 

6 Dasgupta, S., Papadimitriou, C. H., & Vazirani, U. V. (2007). Algorithms, McGraw-Hill.
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increasing subsequences and paths in this dag. Therefore, our goal is simply 
to find the longest path in the dag!

Here is the algorithm:

for j = 1, 2, . . . , n:

 L(j) = 1 + max{L(i) : (i;j) ∈ E}

 return max
j
 L(j).

This is dynamic programming. In order to solve our original problem, 
we have defined a collection of subproblems {L(j) : 1 < j < n} with the fol-
lowing key property that allows them to be solved in a single pass: (1) There 
is an ordering on the subproblems, and a relation that shows how to solve 
a subproblem given the answers to smaller subproblems, that is, subprob-
lems that appear earlier in the ordering. In our case, each subproblem is 
solved using the relation L(j) = 1 + max{L(i) : (i; j) � E}, an expression 
that involves only smaller subproblems. How long does this step take? It 
requires the predecessors of j to be known; for this the adjacency list of the 
reverse graph GR, constructible in linear time is handy. The computation of 
L(j) then takes time proportional to the in-degree of j, giving an overall run-
ning time linear in {E}. This is at most O(n2), the maximum being when the 
input array is sorted in increasing order. Thus the dynamic programming 
solution is both simple and efficient.

Dynamic programming takes advantage of the duplication and arrange-
ment to solve each subproblem only once. Additionally, it saves the solution 
(in a table or in a globally accessible place) for later use. The underlying idea 
of dynamic programming is: avoid calculating the same stuff twice, usually 
by keeping a table of known results of subproblems. Dynamic program-
ming is a tableau method. Unlike divide-and-conquer, which solves the sub-
problems top-down, dynamic programming uses a bottom-up technique. 
The dynamic programming technique is related to divide-and- conquer, in 
the sense that it breaks the problem down into smaller problems and it 
solves recursively.

STIRR operationally defines a database as a set of tuples. The algorithm 
employed is a weight-propagation method. First, an item of interest is seed-
ed, or assigned, a small weight. Then items associated with the item of inter-
est are assigned weights, thus the weight of the item of interest has propagat-
ed to associated items. Then the associated items propagate weights further. 
Note that items highly related to the item of interest acquire weight and the 
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propagation of the weights is transitive. This weight propagation process is a 
nonlinear dynamic system derived from a table of categorical data.

The database is a graph where each distinct value in the domain of 
each attribute is represented by a weighted node. For each tuple in the 
database, an edge represents a set of nodes which participate in that tuple. 
Each tuple in the database is represented with attribute values as a node 
and edges are to represent connections between the attribute values for the 
specific tuple.

 sunny warm soggy false no

overcast

saturated
true yes

mild normal

rainy cold

FIGURE 9.3 Representation of the Weather Data Tuples.

Gibson, Klienberg, and Raghavan2 define a configuration as an assign-
ment of a weight w

v
 for each node v. Next the weights are normalized, 

or the sum of the squared weights is equal to one, accomplished through 
rescaling. Repeated application of a function on the weights is performed 
until a fixed point is reached, a point u is found where f(u) = u. Then no 
more weight-propagation could take place from the fixed point further. The 
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function chosen is a combiner function, Ø. Then, the following algorithm 
is performed:

For each tuple t = {v, u
1
, u

2
,…, u

n – 1
},

containing v do,

x u u ut n� ��( , , , ),1 2 1@

w xv t

t

� � .

FIGURE 9.4 Weight Update Algorithm, w
v
.

This algorithm simply updates the weight of v by updating it on all 
members of the set of tuples that contain v. To complete each step in the 
iteration, the function f is executed by updating the weight of each w

v
 and 

then normalizing the set of weights. The end of each iteration step gener-
ates a new configuration f(w).

To ensure that the combiner function, Ø, is simple and easy to use im-
plies that one chooses either the product function or the sum function for the 
combiner function. Note that the sum function is linear with respect to the 
tuples. The product function and S w w w w w wp k

p p
k
p p( , , , ) ( , , , ,)( / )

1 2 2 2
1@ @=  

involves a nonlinear term for each tuple, that enables a greater potential to 
encode co-occurrences within tuples.

Gibson, Kleinberg, and Raghavan2 have experimentally determined 
that the weight sets generally converge to fixed points or the weight sets 
converge to cycles through a finite set of values. These final configurations, 
due to cycles through a finite set of values, are referred to as a basin. The 
convergence is dependent on the combiner function. Analyzing the stability 
is hard for any arbitrary combiner function. However, for simple combiner 
functions like sum or multiplication, the system definitely converges to a 
fixed point. It is easy to see that for categorical attributes, the values that are 
related through common tuples influence each other during weight modifi-
cation. Thus one does not really require any similarity metric to be defined 
for categorical attributes. Interestingly, in order to cluster the set of tu-
ples, STIRR maintains multiple copies of weights. When the fixed point is 
reached, the weights in one or more of the basins isolate two groups of attri-
bute values on each attribute�the first with large positive weights and the 
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second with small negative weights. The nodes with large positive weights 
and large negative weights are grouped to determine clusters. These groups 
correspond intuitively to projections of clusters on the attribute. However, 
the automatic identification of such sets of closely related attribute values 
from their weights requires a nontrivial postprocessing step; such a post-
processing step was not addressed in the work by Gibson, Kleinberg, and 
Raghavan.2 Moreover, the postprocessing step will also determine what 
�clusters� are output. The underlying idea of STIRR is unique but it may  
be hard to analyze the stability of the system for any useful combiner func-
tions. One requires rigorous experimentation and fine tuning of parame-
ters to arrive at a meaningful clustering. One method of setting the initial 
 configuration is to set small weights to 1 and then normalize the weights, 
this is the uniform initialization. For a randomized initialization, each 
weight is set to an independently random value in [0, 1] and then the ran-
dom weights are normalized.

9.4 CACTUS

CACTUS by Ganti, Gehrke, and Ramakrishnan2 emphasizes the con-
cept of strongly connected sets. In this method, a set of objects, C = {C

1
,  

C
2
,�, C

n
} is called a cluster if:

1. For all i, j � {1, 2,�, n} where i � j, C
i
 and C

j
 are strongly connected.

2. For all i � {1, 2,�, n} C
i
 is maximal.

3. The support fulfills �(C) > �|D|, where �(C) is the support for cluster C 
and � is a threshold constant.

Two sets of values C
1
 ��D

i
 and C

2
 ��D

j
 of different attributes are called 

strongly connected, if all pairs of values a
i
 � D

i
 and a

j
 � D

j
 occur more fre-

quently than expected.

The CACTUS is composed of three components: the summarization 
phase, the clustering phase, and the validation phase. Inter-attribute and 
intra-attribute summaries are formulated by the summarization as well as 
accessing the data. During the clustering phase, cluster candidates are de-
termined. The validation is when the actual clusters are chosen from the 
set of candidates.
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CACTUS (Clustering Categorical Data Using Summaries)7 is a sort of 
subspace clustering. CACTUS attempts to split the database vertically and 
tries to cluster the set of projections of these tuples to only a pair of attri-
butes. Its basic principle can be described as follows. Consider two attribute 
values of two different attributes in the database. Say, a

i
 of attribute type 

A and a
j
 of attribute type B. There may be tuples where a

i
 and a

j
 co-occur 

(i.e., occur together). The support of these two values in the database is the 
proportion of tuples in which they appear together. If this support exceeds 
a prespecified value, we say that these values are strongly connected. This 
concept can be used to compute the inter-attribute and intra-attribute sum-
maries of the given data set. Most interesting aspects of these steps are that 
these can be computed using inter-attribute and intra-attribute summary. 
It is not necessary to refer to the original data base. CACTUS first identi-
fies the cluster projections on all pairs of attributes by fixing one attribute. 
Then it generates an intersecting set to represent the cluster projection on 
this attribute for n-cluster (involving all the attributes). Once all the cluster 
projections on individual attributes are generated, these are synthesized to 
get the clusters of the database. Thus the major steps of CACTUS are:

1. Finding cluster projections on a given attribute A
i
 with respect to 

 another attribute A
j
.

2. Intersecting all the cluster projections for any given A
i
 to get the cluster 

projection of A
i
 with respect to all the attributes.

3. Synthesizing the resulting cluster projections to get the main clusters.

In order to illustrate the CACTUS algorithm, several terms need to 
be operationally defined. These include the support for an attribute value 
pair, how attribute value pairs and two sets of attribute values are strongly 
connected, a cluster over a set of attributes, the similarity between two at-
tribute values, an inter-attribute summary, and an intra-attribute summary. 
The discussion will be centered on Figure 9.2.

Let A
1
, A

2
,�, A

n
 be a set of attributes with domains D

1
, D

2
,�, D

n
. 

Let t ��{D
1
xD

2
x � xD

3
} represent the tuples in the data set. The support 

σ
D
(a

i
,a

j
) for two attribute value pairs is the number of tuples in the data set 

with t.A
i
 = a

i
 and t.A

j
 = a

j
. In Figure 9.3, σ

D
(sunny,warm) = 1 because the 

fact that there is only one entry point into the �warm� node and one exit 
point only allows for one tuple to contain �sunny� and �warm.� In a similar 
fashion, σ

D
(sunny,mild) = 9 because �sunny� has one entry to �mild,� and  
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�mild� has 6 paths leading to �no� and 3 paths leading to �yes.� Note that 
σ

D
(mild,true) = 9 because there are 3 entry points to �mild� and 3 paths 

leading to �true� from �mild.�

The expected support for an attribute pair a
i
 and a

j
 is 

E � D i j

i j

a a
D

D x D
( , )

| |

| | | |
,�

�
�
� �  based upon the assumption that all the attri-

butes are independent and attribute pairs are equally likely. For the  weather 
data set |D| = 15. Additionally, |D

1
| = 3, |D

2
| = 4, |D

3
| = 3, |D

4
| = 2, and  

|D
5
| = 2. Then E � D sunny mild

x
( , )�� �� �

15

3 4
 = 1.25 and E � D mild true( , )� � �

x
� � 15

4 2
= 1.88.

Let a
i
 and a

j
 be 2 attribute values and a > 1. This pair of attribute val-

ues is strongly connected with respect to D if � D i j

i j

a a a
D

D x D
( , )

| |

| | | |
�  and 

�

�

D i j
D i j i ja a

a a if a and a are strongly connected

otherw

∗ � � �
� �

,
, ,

,0 iise i j, .
,

where �

�
�
�

��

An attribute value a
i
 is strongly connected to a subsect S

j
 of D

j
 if a

i
 is 

strongly connected to every a
j
 in S

j
. Two subsets, S

i
 and S

j
 of D, a set of 

tuples itself and represented as a set of attribute values, are strongly con-
nected if every value in S

i
 is strongly connected to every value in S

j
 and 

every value in S
j
 is strongly connected to every value in S

i
. For the example 

in Figure 9.3 let a = 2. Then σ
D
(sunny,warm) = 1 and 2

| |

| | | |

D

D x D1 2

 = 2.5.  

Therefore �sunny� and �mild� are not strongly connected. However, 
σ

D
(sunny,mild) = 3 and then �sunny� and �mild� are strongly connected. 

Notice that σ
D
(mild,ture) = 9 and 2

| |

| | | |
.

D

D x D x2 4

2
15

4 2
3 75= � � �  implies 

that �mild� and �true� are strongly connected.

For i = 1, 2, . . . , n, let C
i
 be a subset of D

i
 with 2 or more members and 

a > 1. Then C = {C
1
, C

2
,�, C

n
} is a cluster over A

1
, A

2
,�, A

n
 if: C

i
 and C

j
 are 

strongly connected for i,j ∈ [0,1] and i � j. For all i,j ∈[0,1] and i � j there 
does not exist a super set �Ci  of C

i
 where for every j ∈ [0,1] and i � j that C

i
 

and C
j
 are strongly connected. The support �

D
(C) of C is at least at times 

the expected support of C under the assumption that the attributes are in-
dependent and the attribute values in each attribute are equally likely. The 
support of C is the number of tuples in D that belong to C, or the  number 
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of all tuples in D where t.A
i
 � C

i
. Computations for the support for various 

attribute value pairs include:

σ
D
(sunny,warm) = 3; σ

D
(overcast,warm) = 3; σ

D
(rainy,warm) = 3;

σ
D
(sunny,mild) = 8; σ

D
(overcast,mild) = 8; σ

D
(rainy,mild) = 8;

σ
D
(sunny,cold) = 0; σ

D
(overcast,cold) = 0; σ

D
(rainy,cold) = 3;

infer that D
1
 and D

2
 are not strongly connected because σ

D
(sunny, cold) = 0.  

D
1
 and {mild} are strongly connected. The additional computations:

σ
D
(mild,soggy) = 5; σ

D
(soggy,false) = 15; σ

D
(saturated,false) = 3;

σ
D
(mild,saturated) = 5; σ

D
(soggy,true) = 10; σ

D
(saturated,true) = 6;

σ
D
(mild,normal) = 5; σ

D
(normal,false) = 3; σ

D
(normal,true) = 6;

σ
D
(false,no) = 11; σ

D
(false,yes) = 0; σ

D
(mild,yes) = 9;

σ
D
(mild,no) = 12; σ

D
(overcast,soggy) = 6; σ

D
(overcast,saturated) = 1;

σ
D
(overcast,normal) = 3; σ

D
(rainy,soggy) = 6; σ

D
(rainy,saturated) = 3;

σ
D
(rainy,normal) = 6;

lead to the cluster: C
1
 = {sunny,rainy}, C

2
 = {mild}, C

3
 = {soggy, normal}, 

C
4
 = {true}, C

5
 = D

5
. To capture the clusters, both a similarity measure and 

summaries need to be operationally defined.

Let a
1
 and a

2
 be members of the same domain of attri-

bute values D
i
; Then the similarity function γ  j is defined as: 

� � �j
j D Da a x D i j a x and a x( , ) | , ( , ) ( , )1 2 1 20 0� � � � �� �� � . Note that γ��2 

(sunny,rainy) = 2.

Let A
1
, A

2
,�, A

n
 be a set of categorical attributes with domains D

1
,  

D
2
,�, D

n
. Let D be the associated data set of tuples. The inter-attribute 

summary, � ij
 is defined as:

� � � � �( , , ( , )) | , [ , ], , , , ( ,a a a a i j i j a D a D and a ai j D i j i i j j D i j� �
� �0 1 )) .�� �� 0

ij

Note that � �12  {(sunny,warm, σ
D
�(sunny,warm) = 3), (sunny,mild, 

σ
D
�(sunny, mild) = 8), (overcast,warm, σ

D
�(overcast,warm) = 3), (overcast, 

mild, σ
D
�(overcast,mild) = 8), (rainy,warm, σ

D
�(rainy,cold) = 3)}.
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The intra-attribute summary, � ii
is defined as:

ii

j

�  = {(a
i1
, a

i2
, γ  j(a

i1
, a

i2
))|i1, i2 ∈ [0, 1], i1 � i2, a

i1
 ∈ D

i
, i2 ∈ D

i
, and γ  j(a

i1
, a

i2
) > 0}.

Then

�� �11

2  = {(sunny,overcast, γ  2 (sunny,overcast) = 2), (sunny,rainy, 
γ  2(sunny,rainy) = 2), (overcast,rainy,γ  2(overcast,rainy) = 2)}.

In the summarization phase of the CACTUS algorithm, for every at-
tribute value pair a counter is set to zero. Next, the data set is scanned. 
For each tuple, the counter is incremented for the pair (t.A

i
, t.A

j
), t ∈ D. 

At the end of the scan, compute σ
D
∗(a

i
,a

j
) for each attribute value pair a

i
 

and a
j
 by setting all counters to zero whose value is less than the threshold 

k
D

D x Dij

i j

= 2
| |

| | | |
. This process counts only the strongly connected attribute 

value pairs. Then the strongly connected pairs can be retained in a matrix 
format for storing sparse matrices. This matrix can be modified to have 
each cell hold the triple for the inter-attribute summaries, which can be 
retrieved by scanning the matrix.

Using the following Structured Query Language (SQL) the following 
statement joins � ij with itself to compute the set of attribute value pairs of 
A

2
 strongly connected to each other with respect to A

j
.

Select  t
1
.A, t

2
.A, count(∗)

From  � ij as t
1
(A,B), � ij

as t
2
(A,B)

Where  t
1
.A � t

2
.A and t

1
.B � t

2
.B

Group by  t
1
.A, t

2
.A

Having  count > 0;

The intra-attribute summaries can then be computed at any time by 
application of the SQL statement.

The clustering phase consists of two steps. First, an analysis of each at-
tribute is run to compute all cluster-projections on it. Each C

i
 in a cluster C 

is a cluster-projection on A
i
. Second, a determination of candidate clusters 

on a pair of attributes, and then extends the pair to a set of three attributes, 
and so on. This is a level-wise synthesis of candidate clusters on sets of at-
tributes from the cluster-projections on individual attributes.
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The validation phase is also based upon a scan. The candidate clusters 
are scanned and any cluster that fails the threshold condition have their 
support deleted.

9.5 CLICK

CLICK (CLIque Clustering using K-partite graphs) uses a graphical 
approach for partitioning the categorical data. Therefore, a quick review of 
graphics is helpful in fully understanding of the CLICK algorithm.

A graph is a triple (V(G), E(G), R) with a set of vertices, V(G), a set of 
edges, E(G), and a relation R:E(G) � V×V.

A graph, G, is connected if there is a path in G between any pair of 
vertices.

(a) (b)

FIGURE 9.5 (a) A Connected Graph, and (b) A Disconnected Graph.

For a graph G with vertex set V(G) and edge set E(G), a subgraph is a 
graph whose vertex set is a subset of V(G) and edge set is a subset of E(G).

A complete graph is a graph in which every distinct pair of edges is 
represented by only one edge. Note that a complete graph with n vertices 
must possess exactly n(n � 1)/2 edges. Figure 9.6 illustrates some complete 
graphs.
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FIGURE 9.6 Complete Graphs.

A K-partite graph is a graph where the vertex set can be split into K sets, 
{A

1
, A

2
,�, A

k
} in a manner where each edge of the graph joins a vertex in  

v
1
 � A

i
 and v

2
 � A

j
, i, j � [1, K], and i � j.
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FIGURE 9.7 A Bipartite Graph.

Consider the following graph G.

2

7

59

6

3

10

1

84

FIGURE 9.8 Sample Study Graph.
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This graph can be represented by the following adjacency matrix A= 
(a

i,
 
j
) where a

i,
 
j
 is 1 if vertices i and j are joined by an edge or is 0 otherwise.

0 0 0 1 0 0 0 1 0 1

0 0 1 0 1 1 1 0 1 1

0 1 0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0

0 1 1 0 0 0 0 0 1 1

0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 0 0

1 1 1 0 0 1 0 0 0 0

TABLE 9.3 Adjacency Matrix.

CLICK uses an algorithm, similar to the one in Figure 9.9, to deter-
mine the maximal complete subgraphs of a graph. The algorithm constructs 
a new matrix, B = (b

i, j
) where b

i, j
 equals 1 if vertex i is in the maximal com-

plete subgraph j and is 0 otherwise. Each column of B identifies a maximal 
complete subgraph.

Let NR be the number of rows

Let NK be the maximal complete subgraph number

Let UBK be the upper bound for NK

Let NC be the number of columns

Input: A
NR

,
NC

 is the adjacency matrix for the graph

Output: C
NR

,
NC

 is the maximal complete subgraph identification matrix

C
1,1

 ← 1

UBK ← 1

Begin {Algorithm}

For NR = 2 to n
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 Begin

  For NK = 1 to UBK

   Begin

    C
NR,NK

 ← 1

   End NK

  For NC = 1 to (NR – 1)

   Begin

    If a
NR,NC

 = 0 then

     For NK = 1 to UBK

      If C
NC,NR

 =1 then C
NR,NK

 ← 0

     End NC

  For NC = 1 to (NR – 1)

   Begin

    If a
NR,NC

 = 0 then

     For NK = 1 to UBK

      Begin

       If C
NC,NK

 C
NR,NK

 = 2

        then C
NC,NK

 ← 0

      End NK

   End NC

  For NC = 1 to (NR – 1)

   Begin

    If a
NR,NC

 = 1 then

     If there exists NK = 1 to UBK where

       C
NC,NK

C
NR,NK

 = 1 then

        UBK ← UBK + 1

   End NC

  End NK
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 If there exists NK = 1 to UBK where C
NC,NK

C
NR,NK

 = 2 then

  Begin

   CS
NC,NK

 ← 1

   For m = 1 to (NR – 1)

    If C
NC,NK

C
NR,NK

 = 2 and a
NC,m

 = 0 then C
m,NK

 ← 0

   For m = 1 to (NR – 1)

    C
m,UBK

 ← 2

   C
NR,UBK

C
NC,UBK

 ← 1

   For m = 1 to NC

    If C
m,NK

 = 2 then

     for m
1
 = 1 to NR

      If C
m1,UBK

 =1 and a
m,m1

 = 0 then

       C
m,UBK

 = 0

  End m

 For NK = 1 to UBK

  Begin

   For NC = 1 to NR

    Begin

     If C
NC,NK

 = 2 then

     Begin

      C
NC,NK

 ← 1

      For m = 1 to NR

       Begin

       If C
NC,NK

C
m,NK

 = 2 and

        a
NC,m

 = 0 then

        C
m,NK

 ← 0

        NC = NC – 1

        End m

    End NC

  End NK

End {algorithm}

FIGURE 9.9 Clique Algorithm.
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1 0 0 1 0 0 1

0 1 1 0 1 1 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 1 0 0 0 0 1

TABLE 9.4 The Maximal Complete Subgraphs for Graph G.
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C4 C7

C5

C6

FIGURE 9.10 The Maximal Complete Subgraphs for Graph G.

The CLICK algorithm is composed of three modules: pre-processing, 
clique (maximal complete subgraphs) detection, and post-processing. Pre-
processing constructs the clique matrix from the adjacency matrix, which 
is derived from the input data set. Note that the attributes are ranked for 
efficiency reasons, using the strongly connected attribute values concept. 
The clique detection module identifies all the k-partite cliques using an 
algorithm similar to Figure 9.10. During this module, care is taken to main-
tain strongly connected cliques. Post-processing utilizes the support of the 



254  Cluster Analysis and Data Mining

candidate cliques, identified in the clique detection module, to find the fi-
nal clusters. These final clusters are optimally merged to partially relax the 
strict cluster conditions. Post-processing is accomplished in a single scan.

9.6 SUMMARY

�� The ROCK method defines two data points to be similar if they tend to 
have a large number of common neighbors.

�� A data point belonging to a cluster C
i
 has ni

f ( )�  neighbors in C
i
 where

f(Θ) = 
1

1

�
�

�

�
.

�� ROCK is a hierarchical clustering algorithm based upon merges of 
 clusters possessing maximal goodness measure.

�� STIRR method is a hypergraph method based upon utilizing dynamic 
programming, where weights are assigned to each node.

�� Two sets of attribute values for distinct attribute domains are strongly 
connected, if all pairs of values in the respective attribute domains occur 
more frequently than expected.

�� CACTUS builds inter-attribute and intra-attribute summaries for deter-
mining cluster candidates chosen on the basis of being maximal strongly 
connected clusters with support greater than a predefined threshold, a 
function of the total number of tuples in the data set.

�� CLICK constructs a matrix representation of the maximal complete 
subgraphs of the data set�s adjacency matrix.

9.7 EXERCISES

Use the following data set, a subset of the Car Evaluation Database 
accessible from the UCI Learning Laboratory, to complete the Exercises 1 
through 10.
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Buying Maint Doors Persons Lug_Boot Safety Class

Low high 2 more big Med Acc

Low high 2 more big High Vgood

Vhigh med 4 more med Med Acc

Vhigh vhigh 2 2 small Low Unacc

Vhigh vhigh 2 2 small Med Unacc

Vhigh vhigh 2 more small High Unacc

Vhigh high 2 4 small Med Unacc

High med 2 more Small High Unacc

High med 2 more Med Low Unacc

Low vhigh 2 2 Small Med Unacc

Low vhigh 2 2 Small High Unacc

Low low 5 more more Med Low Unacc

Low low 5 more more Med Med Good

TABLE 9.5 Auto Purchasing Data.

The attribute values are: 

Buying vhigh, high, med, low

Maint vhigh, high, med, low

Doors 2, 3, 4, 5 more

Persons 2, 4, more

lug-boot small, med, big

Safety low, med, high

purchase unacc, acc, good, vgood

1. Represent this database as a graph, based upon attributes are weighed 
nodes. Each tuple in the database is represented with attribute values 
as a node and edges are to represent connections between the attribute 
values for the specific tuple.

2. Find the similarity between the second and fifth tuples using both 
 formulas discussed in the section on ROCK.

3. For the above data set, find the common neighbors for the second and 
fifth tuples where Θ = 0.2 and Θ = 0.61.
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4. Using the above data set, find and interpret the results for the Link  
(second tuple, fifth tuple) value for Θ = 0.2 and for Θ = 0.61.

5. Determine the goodness measure for two singleton clusters {t
2
} and {t

5
} 

for the above data set for Θ = 0.2 and for Θ = 0.61.

6. Perform a structured walk-thru for the ROCK algorithm applied to the 
following data set:

Buying Maintenance Safety Class

Low High Medium Acceptable

Low High High Very good

Very high Medium Medium Acceptable

Very high Very high Low Unacceptable

Very high Very high Medium Unacceptable

Low Low Medium Good

TABLE 9.6 Auto Purchasing Data Subset One.

7.  Implement the ROCK algorithm as a computer program and run the 
program on the actual Car Evaluation Database in the UCI Learning 
Laboratory or the subset of the database.

8.  Using dynamic programming, solve the following problem: Devise an 
algorithm, using a table, for paying a given amount to a customer using 
the smallest possible number of coins.

9.  Let G be a directed graph with a set N of nodes and a set E of edg-
es. Each edge has an assigned non-negative length. Use dynamic 
 programming to find the length of the shortest path between each pair  
of nodes.

10.  Provide an outline, in your own words, of how the STIRR method would 
solve the clustering for the subset of the Car Evaluation  Database.
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11.  Determine the support values for the attributes given the following 
database:

Maintenance Safety Class

High Medium Acceptable

High High Very Good

Low Medium Unacceptable

Low Medium Very Good

High Medium Unacceptable

Low High Acceptable

TABLE 9.7 Auto Purchasing Data Subset Two.

12.  For a = 1.5 find the pairs of attributes that are strongly connected for 
the database in Exercise 11. Redo this exercise for a = 3.

13. Find the inter-attribute summaries for the database in Exercise 11.

14. Find the intra-attribute summaries for the database in Exercise 11.

15.  Encode the graph for Exercise 1 as an adjacency matrix for the 
 database in Exercise 11.

16.  Find the maximal complete subgraphs for the graph in Exercise 11 
 using the algorithm in Figure 9.10.



C H A P T E R10
MINING OUTLIERS

10.1 INTRODUCTION

Data and information consumers expect their data sets, or large data-
bases, to be accurate. However, database management systems rarely, or 
sometimes not at all, provide a specified level of accuracy for the database. 
The occurrence of inaccurate information eventually raises the need for 
data quality control. High cost, time, and personnel requirements are all 
involved in attempts to repair an existing database. Data cleansing is the 
needed activity for achieving data quality.

Many varieties of situations exist for dirty data including:

1. Sanity checking was not performed for numeric input.

2. Time driven data is now out-of-date.

In This Chapter

10.1 Introduction

10.2 Outlier Detection Methods

10.3 Statistical Approaches

10.4 Outlier Detection by Clustering

10.5 Fuzzy Clustering Outlier Detection

10.6 Summary

10.7 Exercises
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3. Business rules were not programmatically enforced, with triggers or stored 
procedures, or have changed since the system was put into production.

4. Field domain values have changed.

5. Data migration into a new system, or merging of systems allowed 
 noncompliant values.

6. The presence of outliers is causing informational inaccuracy.

When the latter problems are present in the data, then the objective is 
to identify transactions that contain the errors. Through the use of special-
ized personnel, actions to manually correct the errors will be available. An 
effort needs to be cost-effective in outlier detection and data cleaning.

Hawkins1 defines: �An outlier is an observation which deviates so much 
from other observations as to arouse suspicions that it was generated by a 
different mechanism.� The objective of this chapter is to study methods 
meeting the goal of outlier detection, or to identify and understand the dif-
ferent mechanism. Statistical methods, clustering, and fuzzy clustering are 
the outlier detection methods discussed in this chapter.

10.2 OUTLIER DETECTION METHODS

Knorr, Ng, and Tucak2 discuss algorithms and applications of distance-
based outliers. A distance-based outlier is a datum for which at least p per-
cent of the data possesses a distance larger than a specified distance. When 
the Euclidean distance function is the measure of dissimilarity, then the 
outliers are the points that can be isolated from the rest of the data set 
by a neighborhood, or ball, with a radius of the specified distance. The 
distance-based outlier algorithms are difficult to work with due to lack of 
being given the specification of the required distance and probability of the 
data set with the same required distance, for isolating each of the points 
with a neighborhood. Also distance-based outliers do not provide a ranking 
scheme. Distance-based outlier algorithms include nested loop algorithms, 
index-based algorithms, and partition-based algorithms.

Besides being separable from the data set many times in an application, 
there are instances where the outliers are part of the overall data set but 

1  Hawkins, D. (1980). Identification of Outliers. London: Chapman and Hall.
2  Knor, E. M., Ng, R. T., and Tucakov, V. (2000). Distance-based outliers: Algorithms and 

Applications. VLDB Journal, 8(3-4), 237-253.
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are distinct from their local neighborhood of data as addressed by Breunig, 
Kriegel, Ng, and Sander.3 A measurement of the density of a neighborhood 
that captures the local data points and simultaneously excludes the local 
outlier needs to be determined. The determination of this local reachabil-
ity distance can require large run times. With the aid of clustering meth-
ods, the local outliers can be detected by two disjoint neighborhoods; one 
 containing the local neighborhood of data points and the other containing 
only the outlier. The distance between the two neighborhoods then rep-
resents the degree of separation of the local outlier, therefore a ranking of 
outliers is possible.

Brieunig, Kriegel, Ng, and Sander4 discuss a Local Outlier Factor 
 method created by Tan, Steinbach, and Kumar, based on scoring outliers 
on the basis of the density in the neighborhood. The Outlier Factor method 
uses the following definition:

The outlier score of an object is the reciprocal of the density in the ob-
ject�s neighborhood, where density is the average distance to the k nearest 
neighbors:

density( )x k
distance x y

N x k

y N x k
,

( , )

( , )
.

( , )
=













�

�

�
1

A different density approach is to locate outliers using the relative den-
sity of points.

The relative density of a point x is the ratio of the density of a point and 
the average density of its neighbors:

reldensity( )x k
density x k

density y k N x k
y N x k

,
( , )

( , ) ( , )
( , )

=
��

The outlier score of a point is defined to be its relative density. Besides 
selecting the right k is difficult, the algorithm requires quadratic computa-
tion time.

3  Brieunig, S., Kriegel, H. P., Ng, R., & Sander, J. (September, 1999). Optics of identifying 
local outliers, in Lecture Notes in Computer Science, (1704), 262-280.

4  Brieunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000). Lof: identifying density-
based local outliersl. In Proceedings of the 2000 ACM SIGMOD International Conference 
on Management of Data, Dallas, Texas, USA, 93-104.
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This brief discussion has only touched the surface of outlier types. The 
interested reader should consult: Yu and Aggarwal5 for discussion on sub-
space outliers, Hinneburg, Keim, and Wawryniuk6 for discussion of projec-
tion outliers, review literature on sequential outliers, and MINDS. MINDS, 
the Minnesota Intrusion Detection System discussed by Lazarevic, Ertoz, 
Kumar, Ozgur, and Srivastava7 uses the LOF.

10.3 STATISTICAL APPROACHES

A good starting point for finding distance-based outliers is the applica-
tion of the empirical rule or Chebychev�s inequality. The question being 
answered is: �What is the probability that a point will lie within k standard 
deviations of the mean?� If the Central Limit Theorem is invoked, then the 
sampling distribution of the sample mean is normally distributed with mean 
µ and standard deviation �. The question is reduced to: �What is the area 
under the normal probability density function from (µ � k�) to (µ + k�)?� 
The answer is: 0.997 if k = 3, 0.954 if k =2, and 0.683 if k = 1. The answer 
to the original question is that the probability of finding a point that is more 
than three standard deviations away from the mean, an outlier, is less than 
0.003. If the population distribution is unknown, then Chebychev�s inequal-
ity can be used to answer the question. Chebychev�s inequality states that 
for any population distribution at least [1 � (1/k)2](100)% of the data points 
lie within k standard deviations of the mean. Therefore, the probability of 
finding a point, in an arbitrary distribution, which is more than 3 standard 
deviations from the mean, an outlier, is less than 1/9 = 0.11.

Another useful result from statistics is the following theorem by Cher-
noff: Let X

1
, X

2
,�, X

n
 be a sequence of identically independently distrib-

uted 0-1 random variables where p = P(X
i
 = 1), X = X ii�  and µ � E[X]. 

Then for any � 
 0

P X
e

( ( ) )
( )

� � �
�

�

�
�

�

�
��

1
1 1

� �
�

�

�

�

5  Aggarwal, C. C., & Yu, P. S. (2001). Outlier detection for high dimensional data, In Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 
Santa Barbara, California, USA.

6  Hinneburg, A., Keim, A., & Wawryniuk, M. (2003). Using projections to visually cluster 
high-dimensional data, IEEE Computing in the Science of Engineering, 5(2): 14-25.

7  Lazarevic, A., Ertoz, L., Kumar, A., Ozgur, A., & Srivastava, J. (2003). A comparative study 
of anomaly detection schemes in network intrusion detection, In SDM.
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enables the computation of finding the probability of a data point being in 
the region of rejection of a confidence interval, or being identified as a local 
outlier. In this case:

P X np P X npe e
np np

( ( ) ) ( ( ) )� � � � � � � �

�� ��

1 1

2 2

2 2and .

Note that these bounds are not symmetric.

Shawne-Taylor and Cristianini8 discuss the Hoeffding Like Weak 
 Inequality which states: Let {x

1
, x

2
,�, x

l
} be an independent and identically 

distributed set of instances from a random variable X with spread bounded 
by R. Let x  and s

X
 be the sample mean and standard deviation of the sam-

pling distribution. Then for any δ ∈ [0,1], with probability at least (1 � δ) then

x x
R

l
ln f R ll� � � �







=1 2 2

1
( , , )

�
δ

where

1. f is an increasing function of R, which is the spread,

2. f is a decreasing function of l, the number of points, and

3. f is an increasing function of 1 � δ.

Using these tools the outliers can at least be identified. We start with 
a set of independently identically distributed data points with sample stan-
dard deviation, s

X
, and mean x . Upon the arrival of a new data point, the 

question to resolve is: �Is the new point an outlier?�

Basically the approach is to determine if the new data point lies out-
side a neighborhood centered at µ and with radius max

1 ≤ i ≤ l(di
) where d

i
 =  

|x
i
 � µ|, then the new data point is an outlier. However we don�t know µ 

and, therefore, don�t know the d
i
 for i ∈ [0,1]. The solution is to utilize the 

sample mean and Hoeffding�s inequality to estimate the needed threshold. 
Because we have symmetry and independently identically distributed data 
points, then:

P d d P d
li l i i l i l i l(max max ) ( max )1 1 1 1 1

1

1� � � � � � � �
� � � �

�

8  Shawne-Taylor, J., & Cristianini, N. (2005). Kernel Methods for Pattern Analysis, 
 Cambridge.
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then

d x x x xl l l� � �
� � � � � �1 1 1� �

then for all i:

P x x x x f R
ll i l i� � ��� � � � ��� �� �
�1 1 2 1
1

1
max ( , , ) .�

In this section, all of the previous material applies to an univariate dis-
tribution. But in most applications a multivariate distribution is involved.

Now consider that we have a set of independently and identically dis-
tributed data points {x

1
, x

2
,�, x

n
}. Let the sample mean be x  and we are 

given a new data point x
l+1

. Now use x  and the Hoeffding inequality to 
estimate a threshold, which enables the identification of outliers.

The multivariate normal distribution has the probability density 
 function:

f X x e xx TR

( ) ( )( )= = �� �

�� �
1

 where �  is the d × d variance-covariance 

matrix. Let X
NR,ND

 be the data matrix with NR rows and ND columns. The 
Mahalanobis distance between two points x and y in d dimensional space is:

Mahal Tr( , ) ( ) ( )x v x y x y� � �
�

�
1

and

=

�

�

�

�

�

�
�
�
�
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�
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�

�

�
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11

21

1

12

22

2

1

2

B B B B
d d

d

d

dd

 is the variance-covariance matrix.

Completion of the following steps will construct the variance- covariance 
matrix:

Step 1: Subtract the mean vector from each row of the data matrix.

Step 2: Compute the dot product between the columns of the data matrix.

Step 3:  Multiply the data matrix, after completion of Step 2, by 
1

1NR �
.  

The square of the Mahalanobis distance to the mean of the data 

set is a 
1

1NR �
 chi-square distribution, with d degrees of freedom. 
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 Using this information, the following algorithm can be employed 
for finding multivariate outliers:

Input: a NR × d data set X

Output: the candidate outliers

1. Calculate µ and �.

2. Let D be the NR × 1 vector containing of the square of the Mahalanobis 
distance to µ.

3. Find the data points O in D whose value is greater than the critical value 

for χd
2

 for (1 � α) = 0.975.

4. Return O.

When applying this algorithm, the investigator must remember several 
compounding factors:

One outlier can skew the results of a study because the mean is very 
sensitive to extreme values.

The Mahalanobis distance itself is impacted by the outliers. Rousseeuw 
and Driessen9 devised a method for making the statistical estimator less 
sensitive to the outliers, called the Minimum Covariance Determinant, 
MCD. Using a subset of n data points, the MCD minimizes the determi-
nant of the variance-covariance matrix over all subsets of size n. Let

R∗ = argmin {det �� �R |R is a subset of the data matrix D of size n}. Then 

compute µ and �  and finish by computing the Mahalanobis distance based 

not on D but on R∗. A very important result for the MCD is:

Let D be the original NR × d data set and R be a size n subset of D. 
Compute µ

R
 and �R

 based upon R. Compute the Mahalanobis distance of  
all points in D based upon µ

R
 and �R

. Sort the Mahalanobis distances 
and select n points with the smallest distance, label this set as R2. Then 
det(R2) ≤ det(R).

Therefore, when starting with a random configuration, the next genera-
tion will not increase the determinant. Then D-D plots, comparing the ro-
bust Mahalanobis to the full Mahalanobis will detect some candidate  outliers.

9  Rousseeuw, P. J., & Driessen, K. V. (1999). A fast algorithm for minimum covariance de-
teriminant estimator. Technometrics, 41:212-223.
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This section has presented a very brief introduction on statistical al-
gorithms for detecting outliers. Neighborhoods are part of the foundation 
for the statistical methods. A natural outgrowth of these approaches leads 
to using clustering methods to find clusters with few data points that are 
expected to contain observations that are significantly different from the 
majority of the data points.

10.4 OUTLIER DETECTION BY CLUSTERING

An algorithm for outlier detection is to:

Step 1: run a hierarchical clustering method on the data set.

Step 2:  select the data points, or rows of the data set matrix, that are 
 allocated to small clusters.

Step 3: manually correct the data points from noise, etc.

Several parameters need to be specified. The level for cutting the den-
drogram needs to be specified. If the level number is small, then the outli-
ers can end up being members of clusters based upon normal observations. 
If the number of clusters is too large, then the end result might be select-
ing several clusters containing only normal members. Choice of hierarchi-
cal clustering needs to be addressed. Another parameter to consider is the 
choice of distance function. Before selecting the small clusters, the investi-
gator could consider an extra step in the algorithm for optimization, using 
a K-means type clustering. But the K-means algorithm is sensitive to noise 
and outliers (Laan, Pollard, and Bryan).10

Clustering-based approaches are capable of being used incremently, 
or after determining the clusters then new data points can be inserted into 
the system and tested for outliers. Normal points tend to belong to large 
densely filled clusters, whereas outliers do not belong to any cluster or to a 
small sparsely filled cluster. This is one of the possible environmental con-
straints that is in place when using cluster analysis for outlier detection. Wu 
and Zhang11 used normal data to generate clusters for representing  normal 

10  Laan, Pollard, M. K., & Bryan, J. (2003). A new partitioning around medoids algorithms. 
Journal of Statistical Computation and Simulation, (73), No. 8, 575-584.

11  Wu, N., & Zhang, J. (2003). Factor analysis based anomaly detection. In Proceedings of 
IEEE Workshop on Information Assurance. United States Military Academy, West Point, 
NY, USA.
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modes of behavior of the training data. Then any new data instance should 
be posted to one of the existing clusters if it is a normal data; otherwise, it is 
identified as an outlier. He, Xiaofei, and Shengchun12 calculated a measure 
called the semantic outlier factor which is high if the class label for an ob-
ject in a cluster is different from the majority of the class labels in that clus-
ter. A nearest neighbor analysis is widely used for outlier detection. Normal 
points are, by definition, points having normal closely related neighbors and 
outliers are points which are far from other points. Knorr and Ng13 proposed 
generalizations of outliers based on a variety of distributions. These gen-
eralizations are similar to those proposed by Kollios, Gunopulos, Koudas, 
and Berchtold14 and Ramaswamy, Rastogi, and Shim.15 Kollios, Gunopulos, 
Koudas, and Berchtold give the following definition for outliers:

An object O in a data set T is a DB(k,D) outlier if at most k objects in T lie 
a distance at most D from O. Ramaswamy, Rastogi, and Shim�s definition is:

Outliers are the top n data elements whose distance to the kth nearest 
neighbor is greatest. These authors recommend the application of a simple 
nested loop algorithm:

 For each object O � T, compute the distance to each object (q � O) � T 
until (k + 1) neighbors are found with distance less than or equal to D.

 If |Neighbor(O)| � k, then report O as a DB(k,D) outlier.

Zhang and Wang16 defined the outlier score of a data point to be the 
sum of its distances from its k nearest neighbors and additionally proposed 
a post processing of the outliers to identify the subspaces in which they 
exhibited outlying behavior.

12  He, Z., Xiaofei, X., & Shengchun, D. (2002). Squeezer: An efficient algorithm for cluster-
ing categorical data. Journal of Computer Science and Technology, 17, 5, 611-624.

13  Knorr, E. M., & Ng, R. T. (1999). Finding intentional knowledge of distance-based outli-
ers. In Proceedings of 25th International Conference on Very Large Data Bases, Morgan 
Kaufmann, 211-222.

14  Kollios, G., Gunopulos, D., Koudas, N., & Berchtold, W. (2003). Efficient biased sampling 
for approximate clustering and outlier detection in large datasets. IEEE Transactions on 
Knowledge and Data Engineering.

15  Ramaswamy, S., Tastogi, R., & Shim, K. (2000). Efficient algorithms for mining outliers 
from large data sets. In SIGMOD Conference, 427-438.

16  Zhang, J., & Wang, H. (2006). Detecting outlying subspaces for high-dimensional data: 
the new task, algorithms, and performance. Knowledge and Information Systems 10, 3, 
333-355.
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All of the techniques discussed so far locate global outliers and perform 
poorly if varying degrees of density are present among the data.

Breunig, Kriegel, No, and Sander17 use LOF for computing the density 
of regions in the data and declare the instances in low dense regions as 
outliers. Although local outlier detection methods overcome the variation 
in density issues in the data, they lead to a computational explosion. The 
major problem with nearest neighbor methods is that the computational 
complexity required to compute the distances between every point is O(n2). 
However, Bay and Schwabacher18 proposed a linear time algorithm, rather 
than the common quadratic time algorithm, using randomization and prun-
ing for detecting outliers:

1. Randomize the data.

2. Partition the data matrix into blocks.

3. Compare each point in the block to every point in the data matrix.

4. Keep track of the Top n outliers, Top n, and the weakest outlier, the point in 
Top n which has the smallest k nearest neighbor, during block processing.

5. Prune points as soon as they become nonoutliers.

6. As more blocks are processed, the weakest score keeps increasing and 
more points get pruned sooner.

One of the most commonly used algorithms, DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise), captures outliers. DBSCAN, 
developed by Ester, Kriegel, Sander, and Xu,19 determines a number of 
clusters based upon the density distribution of neighboring points.  Clusters 
keep growing during execution of the DBSCAN algorithm, until the den-
sity, or number of points, in the neighborhood exceeds some threshold.

17  Breuunig, M. M., Kriegel, H. P., No, R. T., & Sanders, J. (2000). LOF: identifying density-
based local identifiers. In Proceedings of 2000 ACM SIGMOD International Conference 
on Management of Data, ACM Press, 93-104.

18  Bay, S. D., & Schwabacher, M. (2003). Mining distance-based outliers in near linear time 
with randomization and a simple pruning rule. In Proceedings of Ninth ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, Washington, D. C., 
USA, 29-38.

19  Ester, M., Kriegel, H-P, Sander, J., & Xu, X. (1996). A density-based algorithm for discov-
ering clustering large spatial databases with noise. Proceedings 2nd International Confer-
ence on Knowledge Discovery and Data Mining.
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Clusters located by DBSCAN are sets of �density connected� points. 
DBSCAN clusters are composed of four types of points: the core point 
(or center of the neighborhood), interior points, border points, and noise 
points. The operational definition for these points is dependent on the defi-
nition of density reachable.

Definition: Eps is the distance from the core point.

Definition: MinPts is the specified minimal number of points in a 
neighborhood to be able to have the neighborhood labeled as a cluster.

Definition: The Eps Neighborhood is the neighborhood within a ra-
dius of eps from the specified point.

Definition: If the eps neighborhood of a point contains at least MinPts 
then the point is called a core point.

Definition: A point q is directly density-reachable from a point p if it 
is not a greater distance than a specified distance �, or the eps parameter for 
the DBSCAN algorithm, and if p is surrounded by MinPts or more points 
such that p and q are part of a cluster.

Definition: A border point has fewer than MinPts within eps, but is in 
the neighborhood of a core point.

Definition: A noise point is any point that is not a core point nor a 
border point.

Figure 10.1 illustrates a core point, a 1-neighborhood of q, and a noise 
point.

p

q

MinPts = 4

q a core point

1-neighborhood of q

Eps = 1

FIGURE 10.1 A Core Point q Using a 1-Neighborhood 
and a Noise Point p.

Definition: A point p is density-reachable from a point q given eps 
and MinPts if there a sequence p

1
, p

2
,�, p

m
 where p

1
 = p and p

m
 = q with 

each p
i+1

 being directly density reachable from p
i
. Figure 10.2 illustrates a 

pair of points p and q where q is density-reachable from p.
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p

q

MinPts = 4

p a core point

1-neighborhood of p

Eps = 1

FIGURE 10.2 Point p is Density-Reachable from Point q.

Note that the relationship of being density-reachable is not symmetric, 
as illustrated in Figure 10.3.

p

q

MinPts = 4

p a core point

1-neighborhood of p

Eps = 1

FIGURE 10.3 Point p is not Density-Reachable From Point q.

Definition: Two points p and q are density-connected if there is a 
point r where p and r as well as r and q are density-reachable.

In Figure 10.4 points p and q are density-connected.

MinPts = 3
Eps Eps specified

q
r

p

FIGURE 10.4 Density-Connected Points p and q.

Definition: A cluster, C, is a subset of the points in the database where:

�� All points in C are mutually density-connected, and

�� If a point p is density-connected to any point in C then p is a member  
of C.
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The following pseudo-code for the DBSCAN algorithm has Eps and 
MinPts as parameters;

DBSAN Algorithm
Step 1: Input Eps and MinPts plus the database, D.

Step 2: C = 0 {label for cluster 0}

Step 3: Repeat for each unvisited p in D

   { mark p as visited

   N ← neighbors(p,Eps)

   IF size(N ) < MinPts,

    THEN Mark p as NOISE

   ELSE

    {C = C + 1

    Expandcluster(p, N, C, Eps, MinPts)}

}

Expandcluster(p, N, C, Eps, MinPts)

   Post p to C

   Repeat for each point q in N

   {IF q is not visited

    THEN mark q as visited

   Ní = neighbors(q, Eps)

   IF size(Ní) Ó MinPts
    THEN N = N ∪N'
   IF q is not a member of any cluster

    THEN Post q to C}

Notice that unlike k-means DBSCAN does not require the end user 
to know the number of clusters ahead of time. Besides finding outliers, 
DBSCAN can locate arbitrarily shaped clusters. On the negative side, DB-
SCAN does not work well if the data sets in the database have varying den-
sities or a bad choice is made for the distance measure used by the function 
neighbors (p, Eps).

10.5 FUZZY CLUSTERING OUTLIER DETECTION

Belal, Al-Zoubi, Al-Dahoud, and Yahya20 use the Fuzzy C-means clus-
tering algorithms for outlier detection. The advantages for this choice in-
clude: implementation ease, applicability to multidimensional data, and the 
ability to model uncertainty within the data. In phase one, a Fuzzy C-means 

20  Belal, M., Al-Zoubi, Al-Dahoud, & Yahya, A. A. (May, 2010). New Outlier Detection 
Method Based on Fuzzy Clustering. WSEAS Transactions on Information Science and 
Applications, Issue 5, (7): 661-690.
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clustering is run on the data set in order to produce an objective function. 
This objective function represents the Euclidean distance between cluster 
centroids. Data points belonging to the resultant clusters are multiplied by 
the membership values of each cluster produced by the Fuzzy C-means 
clustering. During phase two, small clusters are then determined and con-
sidered as outlier clusters. Small clusters are clusters with fewer data points 
than half the average number of data points in the c-clusters. This is a den-
sity-based outlier method, not a distance-based method.

Basically, this method emphasis is on the assumption that removing a 
data point will cause a decrease in the objective function, the total sum of 
squares of distances between the cluster centroids and the points that are 
members of the clusters. If the decrease is greater than a specified thresh-
old, then the data point is considered to be an outlier.

10.6 SUMMARY

�� Given a set of identically independently distributed points {x
1
, . . . x

n
} 

with sample mean s and population mean µ. A new point x
n + 1

 arrives. 
Is x

n + 1
 an outlier? Answer: Let B be a ball centered at µ of radius equal 

to the maximum distance between data points in the ball and the ball�s 
centroid. If the new data point lies outside the ball then declare it as an 
outlier.

�� It is well known that both the mean and standard deviation are extreme-
ly sensitive to outliers.

�� �Robustification� means making the statistical estimator less sensitive to 
outliers.

�� The weakness of statistical outlier methods is their sensitivity to the 
mean of the data sets.

�� Distance-based outlier detection methods are very sensitive to varying 
degrees in cluster densities in a clustering.

10.7 EXERCISES

1. Distinguish between distance-based and density-based outliers.

2. Find the outlier(s) for the data set {25, 73, 34, 85, 95, 38, 79, 56, 38, 67, 
74} using the local outlier factor method.
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3. Find the outlier(s) for the data set {25, 73, 34, 85, 95, 38, 79, 56, 38, 67, 
74} using the relative density approach.

4. Find the outlier(s) for the data set {25, 73, 34, 85, 95, 38, 79, 56, 38, 67, 
74} using Chebychev�s inequality.

5. Find the outlier(s) for the data set {25, 73, 34, 85, 95, 38, 79, 56, 38, 67, 
74} using the Empirical Rule.

6. Find the outlier(s) for the data set {25, 73, 34, 85, 95, 38, 79, 56, 38, 67, 
74} using the Hoeffding Like Weak Inequality.

7. Filzmoser21 simulates a data set in two dimensions in order to simplify 
the graphical visualization. Eighty-five data points follow a bivariate 
standard normal distribution. Multivariate outliers are introduced by  
15 points coming from a bivariate normal distribution with mean (2; 2)T 
and covariance matrix diag(1=10; 1=10).

3
2

1
0

–1
–2

–3

–3 –2 –3 0 1 2 3

FIGURE 10.5 Filzmoser’s Simulated Data Set.

 Describe how the Mahalanobis distance can be used to find the outliers 
in this data set.

21 Filzmoser, P. A multivariate outlier detection, e-mail: P.Filzmoser@tuwien.ac.at
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 8. Describe how clustering methods could be used to find the outliers in 
the data set for Exercise 7.

 9. Describe how fuzzy clustering methods could be used to find the outli-
ers in the data set for Exercise 7. Which method is preferable, the crisp 
clustering or the fuzzy clustering method? Why?

10. Use the Neymann-Scott program listing and the linear time algorithm 
by Bay and Schwabacher to implement a program to run an outlier 
detection for 2 dimensional data sets with 3 to 5 features.

11. Defend the statement: �It is well known that both the mean and stan-
dard deviation are extremely sensitive to outliers.�

12. Defend the statement: �The weakness of statistical outlier methods is 
their sensitivity to the mean of the data sets.�

13. Defend the statement: �Distance-based outlier detection methods are 
very sensitive to varying degrees in cluster densities in a clustering.�

14. Use the Neymann-Scott program listing and the linear time algorithm 
by Bay and Schwabacher to implement a program to run an outlier 
detection for 2 dimensional data sets with 3 to 5 features and using an 
optimizing clustering approach.
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15. Consider the following data points:

Point

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

X Y
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2

3

4

4

4

5

6

7

8

7

6

6

8

9

3

7

6

4

4

3

1

2

3

4

5

6

5

6

7

8

6

7

8

6

10

7

3

4

6

3

2 0

2

4

6

8

10

12

0 5 10 15 20 25

FIGURE 10.6 Hypothetical Data Set.

 (a)  Illustrate points in the data set that are directly density reachable.

 (b)  Illustrate points in the data set that are density connected but not 
density reachable.

16. Use, by hand, the DBSCAN algorithm to obtain a clustering for the 
data set in Exercise 15.

17. Implement and run the DBSCAN algorithm, in a programming 
 language of your choice, on the data set for Exercise 12.



C H A P T E R11
MODEL-BASED CLUSTERING

11.1 INTRODUCTION

Model-based clustering assumes that the data is based upon a mixture 
of probability distributions given that the cluster memberships of the data 
set are not known. The objective for model-based clustering is to estimate 
the parameters of the cluster distributions by maximizing the likelihood 
function of the mixture density with respect to the observed data. In gen-
eral model-based clusterings are either statistical or AI algorithms. Neural 
networks will be discussed in Chapter 12.

An example of model-based clustering is COBWEB, a conceptual clus-
tering system that organizes data to maximize inference abilities (Fisher).1 

In This Chapter

11.1 Introduction

11.2 COBWEB: A Statistical and AI Approach

11.3 Mixture Model for Clustering

11.4 Farley and Raftery Gaussian Mixture Model

11.5 Estimate the Number of Clusters

11.6 Summary

11.7 Exercises

1 Fisher, D. (1987). Improving Inference Through Conceptual Clustering. AAAI-87  Proceedings.
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COBWEB was developed as a model to simulate how humans incremen-
tally form concepts. The concept hierarchy is represented by a generalized 
tree structure where each new instance is represented as an ordered set 
of attribute-value pairs. Each attribute can be assigned only one value per 
instance. During tree construction, the tree is recursively navigated using 
a form of the hill-climbing search rather than a depth-first or breadth-first 
search. COBWEB stores the probability of the concept�s occurrence at 
each concept node, as well as information about every attribute observed in 
the instances that are covered by the concept. As COBWEB navigates the 
tree structure, it selects which tree operations to apply using a category util-
ity, which gives a high score to partitions that maximize intra-class similarity 
and inter-class similarity.

11.2 COBWEB: A STATISTICAL AND AI APPROACH

Consider the construction of a hierarchy of abstract classes for the fol-
lowing set of traffic signs:

Sign number Sign Color Shape Type

1 Yield Yellow Triangle Warning

2 Stop Red Octagonal Regulatory

3 Railroad crossing Yellow Round Warning

4 Bicycle route Green Rectangle Guide

5 Do not enter Red Round Regulatory

6 Intersection Yellow Diamond Warning

7 School zone Yellow Pentagon Warning

8 National park Brown Trapezoid Guide

TABLE 11.1 Traffic Signs Data Set.

The series of traffic sign instances are input to the COBWEB algorithm 
and then stored as a concept node, or as a knowledge representation. The 
concept hierarchy is a tree where each node in the tree describes a concept. 
The first instance, a yield sign, is described as an ordered set of attribute-
value pairs as illustrated in Table 11.2:

Color Yellow

Shape Triangle

Type Warning

TABLE 11.2 Instance of a Yield Sign.
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Each time an instance is added to the hierarchy, knowledge is added by 
changing information within the concept nodes or possibly by changing the 
overall structure of the hierarchy. The first instance establishes the root of 
the tree as depicted by Table 11.1:

Color Yellow
Shape Triangle
Type Warning

Hierarchy:

First Instance:
Yield sign

P(C0) =1.00

Color Yellow 1.00
Shape Triangle 1.00

Type Warning 1.00

P(V C)

FIGURE 11.1 Concept Hierarchy After the First Instance of a Traffic Sign.

COBWEB stores the conditional probability of each given attribute 
value, given the membership in the class covered by the concept. Addition-
ally COBWEB stores the probability of the concept�s occurrence at each 
concept node. The nodes in the hierarchy are numbered as C

k
 for k = 0 to 8. 

Terminal nodes in the hierarchy describe single instances. The top of each 
node is the probability of occurrence for that specific class, or the parent 
for a specific class.

As instances are input to COBWEB, four operations can be applied 
to the hierarchy for incorporating new knowledge. These operations are 
applied locally to the sub-tree composed of the last concept for which 
an instance was classified and to the children of this node. An evaluation 
 function, called the category utility, is used by COBWEB to select which 
operation to apply. This selection is to choose the maximum value of the 
category utility value.

The four operations are:

1. To incorporate: when an instance fits into an existing concept. The 
instance is integrated into one of the child nodes. If the child node is not 
a singleton, then the conditional probabilities are updated in the con-
cept node and each of the attribute values is updated. If the node being 
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 incorporated is a singleton then the incorporating node is added as a 
new downward leaf node.

2. To create new disjunct: when an instance has very different characteris-
tics from any existing concept at the current concept level. The instance 
is inserted as a category by itself or a sibling of the existing concept nodes.

3. To merge: occurs when the hierarchy is overly branched. Two classes are 
combined to provide a good concept to which to classify the incoming 
instance.

4. To split: when the hierarchy contains a node that is too general. The 
general node is broken into well-defined classes to create a good match 
for the incoming node by removing the current node and replacing it 
with its children.

To make this choice, the system must be able to evaluate alternative 
classifications and apply the operator that produces the best hierarchy. 
COBWEB uses the category utility to score these alternatives. Different 
classifications of a new instance result in a number of different hierarchies 
of all the instances into classes. The category utility function gives a high 
score to partitions which maximize similarity among class members, intra-
class similarities, and differences between members of different classes, 
inter-class differences.

In effect, the category utility trades off the predictiveness of each attri-
bute value, the probability of an instance�s membership in a class, given its 
attribute value, and the predictivity of the value, the probability of the value, 
given that an instance is a member of a class. To summarize,  predictive val-
ues are those most nearly unique to a certain class and therefore  indicative 
of it. The evaluation function favors classes with many predictive  attribute 
values because these maximize inter-class differences. Predictable values 
are those that many members share and therefore are easy to guess accu-
rately. The evaluation function favors classes with many predictable values 
because these maximize intra-class similarities. Because attributes are of-
ten not both predictable and predictive, category utility trades off the two, 
maximizing each as much as possible. The category utility equation can be 
summarized as

X Y

K

�
,
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where X is the expected number of attribute values that can be correctly 
guessed, given the K categories, and Y is the expected number of attribute 
values that can be correctly guessed without any category knowledge. Di-
viding by K, the total number of classes, normalizes for partitions with dif-
fering numbers of classes. In the expanded equation, the X term is

P C P A V Ckk

K

i ij kj

J

i

I
( ) ( )

= ==� �� =
1

2

11
�

summing across K classes, I attributes, and J values. P(C
k
) is the probability 

of occurrence of a particular class C
k
 and P A V Ci ij k( )� �  is the conditional 

probability of a particular value V
ij
 given membership in the class. The Y 

term expands to

P A Vi ijj

J

i

I
( )=

== �� 2

11

where P A Vi ij( )=  is the probability of a particular value at the parent of 
the node classes being considered; that is, the probability across all classes 
without category knowledge. The complete equation is:
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For information on the derivation of this equation, refer to Gluck and 
Corter,2 which gives a two-class version of the equation, and Fisher,3 which 
gives this multi-class form.

Figure 11.3 depicts the hierarchy generated by creating a new adjunct 
operation after the second instance is input.

The following navigation path is followed to generate Figure 11.2. First 
an attempt is made to insert or incorporate at the root node. Because this is 
a distinct sign separate from the root node, then a new concept node, based 
upon any of the three attributes needs to be considered. For all three attri-
butes: X = (0.5)(12 + 12 + 12) + (0.5)(12 + 12 + 12) =3; Y = 3((0.5)2 + (0.5)2) = 1.5;  

2  Gluck, M., & Corter, J. (1965). Information, uncertainty and the utility of categories. Pro-
ceedings of the Seventh Annual Conference of the Cognitive Science Society. Irvine, CA: 
Lawrence Erlbaum, 283-287.

3  Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering, Doctoral 
dissertation, Department of Information and Computer Science, University of California, 
Irvine.
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and the category utility value is 
3 1 5

2

� .
 = 0.75. Therefore any of the at-

tributes can be chosen for the root node linked list header pointer. Each 
concept node has three link list headers: color list header, shape list header, 
and the type linked list header. For class C

0
 node in Figure 11.2 both the 

shape list header and the type list header are set to null, and in this under-
lying data structure for the hierarchy tree, the color list header points to a 
FIFO linked list containing the first and second instances.

When inputting the third instance, the railroad crossing sign, first the 
root directs the instance to the class C

1
 node. Then either the third instance 

should be entered into the color link list of the root node, the C
0
 node,  using 

the incorporate operation or merge operation applied to the C
1
 node. For 

Second Instance:
Stop sign

Color Red
Shape Octagonal
Type Regulatory

Hierarchy:

Color Yellow
Red

0.50
0.50

Shape Triangle
Octagonal

0.50
0.50

Type Warning
Regulatory

0.50
0.50

P(C0) =1.00 P(V C)

P(C1) = 0.5

Color Yellow 1.00
Shape Triangle 1.00

Type Warning 1.00

P(V C)

Color Red 1.00
Shape Octagonal 1.00
Type Regulatory 1.00

P(C2) = 0.50 P(V C)

FIGURE 11.2 Concept Hierarchy After the Second Instance of a Traffic Sign.
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the incorporate operation, the value of X = (0.33)(12 + 0.52 + 0.52 + 12) + 
(0.33)(12 + 12 + 12) + (0.33)(12 + 12 + 12) = 2.81; Y = 12 + 0.52 + 0.52 + 12 = 2.5;  
and the category utility value is 0.10. For the merge operation the value of 
X = (0.5)(12 +12 + 12) + (0.5)(12 + 12 + 12) = 3; Y =12 + 0.52 + 0.52 + 12 = 2.5; 
and the category utility value is 0.17. Therefore, a merge of class C

1
 node 

generates Figure 11.3

Third Instance:
Railroad crossing sign

Color Yellow
Shape Round
Type Warning

Hierarchy:

P(C0) =1.00

Color Yellow
Red

0.67
0.33

Shape Triangle
Octagonal
Round

0.33
0.33
0.33

Type Warning
Regulatory

0.67
0.33

P(V C)

P(C1) = 0.67

Color Yellow 1.00
Shape Triangle

Round
0.50
0.50

Type Warning
Regulatory

0.50
0.50

P(V C)

P(C1) = 0.5

Color Yellow 1.00
Shape Triangle 1.00
Type Warning 1.00

P(V C) P(C1) = 0.5

Color Yellow 1.00
Shape Round 1.00
Type Warning 1.00

P(V C)

P(C2) = 0.33

Color Red 1.00
Shape Octagonal 1.00
Type Regulatory 1.00

P(V C)

FIGURE 11.3 Concept Hierarchy After the Third Instance of a Traffic Sign.
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The fourth instance, a Bicycle route sign, is placed at the first node 
in the root node�s linked list, therefore the concept hierarchy tree as illus-
trated in Figure 11.4. Note that this hierarchy was generated by applying an 
incorporation to a singleton while extending downward operation.

Fourth Instance:
Bicycle route sign

Color Green

Shape Rectangle

Type Guide

Green

Rectangle

Guide

Hierarchy:

P(C0) =1.00

Color Yellow
Red
Green

050
0.25
0.25

Shape Triangle
Octagonal
Round
Rectangle

0.25
0.25
0.25
0.25

Type Warning
Regulatory
Guide

050
0.25
0.25

P(V C)

P(C1) = 0.67

Color Yellow 1.00

Shape Triangle
Round

0.50
0.50

Type Warning
Regulatory

0.50
0.50

P(V C)

P(V C)P(C1) = 0.5

Color Yellow 1.00

Shape Triangle 1.00

Type Warning 1.00

P(V C)P(C1) = 0.5

Color Yellow 1.00

Shape Round 1.00

Type Warning 1.00

P(V C)P(C2) = 0.33

Color Red 1.00

Shape Octagonal 1.00

Type Regulatory 1.00

P(V C)P(C1) = 0.5

Color 1.00

Shape 1.00

Type 1.00

FIGURE 11.4 Concept Hierarchy After the Fourth Instance of a Traffic Sign.
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After the completion of the fifth instance, using a merge operation, the 
hierarchy is depicted as in Figure 11.5:

Fifth Instance:
Do Not Enter sign

Color Red

Shape Round

Type Regulatory

Hierarchy:

P(C0) =1.00

Color Yellow
Red
Green

040
0.40
0.20

040
0.40
0.20

Shape Triangle
Octagonal
Round
Rectangle

0.20
0.20
0.40

Type Warning
Regulatory
Guide

P(V C)

P(C1) = 0.40

Color Yellow 1.00

Shape Triangle

Round

0.50

0.50

Type Warning

Regulatory

0.50

0.50

P(V C)

P(V C)P(C1) = 0.5

Color Yellow 1.00

Shape Triangle 1.00

Type Warning 1.00

P(V C)P(C1) = 0.5

Color Yellow 1.00

Shape Round 1.00

Type Warning 1.00

P(V C)P(C1) = 0.5

Color Red 1.00

Shape Octagonal 1.00

Type Regulatory 1.00

P(V C)P(C1) = 0.5

Color Red 1.00

Shape Round 1.00

Type Regulatory 1.00

P(V C)P(C2) = 0.40

Color Red 1.00

Shape Octagonal 0.50
0.50

Type Regulatory
Warning

0.50
0.50

P(V C)P(C1) = 0.20

Color Green 1.00

Shape Rectangle 1.00

Type Guide 1.000.20

Round

FIGURE 11.5 Concept Hierarchy After the Fifth Instance Added.

The sixth instance, an intersection sign, employs a new disjoint and the 
category utility function value is calculated for both the shape and type at-
tributes, resulting in Figure 11.6.
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FIGURE 11.6 Concept Hierarchy After the Fifth Instance Added.

11.3 MIXTURE MODEL FOR CLUSTERING

COBWEB applies this version of category utility when instances have 
nominal attributes. It cannot be applied when instances have numeric at-
tributes, because it is unable to distinguish any difference between num-
bers that are close in value from those that are far apart. For example, 
the real numbers 3.112, 3.113, and 12.9 would all be treated as distinct, 
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unrelated values by the original equation. However, category utility can be 
adapted to deal with numeric valued attributes. Because probabilities for 
numeric attributes are stored as a normal distribution (a mean and a stan-
dard deviation), the innermost summation in the ordinary category utility 
equation can be replaced with the integral of the equation for the normal 
distribution

P A V e dxi ij
x

j
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where K is the number of classes, I is the number of attributes, �
ik
 is the 

standard deviation for attribute i in class k, �
ip
 is the standard deviation for 

attribute i in the parent (i.e., where no information is present).

One problem with this transformed equation is that � = 0 when a con-
cept node describes a single instance, so the 1/� is �  in this case. In this 
situation, COBWEB relies on a user-specified parameter, acuity, to serve 
as a minimum value for �. Acuity represents the minimum detectable dif-
ference between instances.

Typically, some instance descriptions are incomplete, with values miss-
ing for one or more attributes. In this implementation of COBWEB, we 
adapt the category utility equations so they handle this situation by dividing 
the attribute summations by I, the number of attributes in the incoming 
instance. The revised equations are:
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for continuous values. As Gennari4 points out, mixing nominal and numeric 
attributes in a single instance description is an open issue in the literature 
on numerical taxonomy and clustering. However, Gennari5 presents evi-
dence that summing together terms from both forms of the equation works 
well in domains with mixed data.

11.4 FARLEY AND RAFTERY GAUSSIAN MIXTURE MODEL

Generally in model-based clustering, it is assumed that the data is gen-
erated by a mixture of distributions in which each component represents 
a different group or cluster. The model for the composite of the clusters 
is usually formulated either by the classification likelihood approach or by 
the mixture likelihood approach. Farley6 developed efficient algorithms for 
hierarchical clustering with the various parametrizations of Gaussian mix-
ture models. Ward7 used the sum of squares, which is based on Gaussian 
mixtures.

Model-based clustering methods attempt to optimize the fit between 
the data and some mathematical model. Finite mixtures are model-based 
clustering approaches where probabilistic clustering algorithms model the 
data using a mixture of distributions. Each cluster is represented by one 
distribution, which governs the probabilities attribute values in the corre-
sponding cluster. Usually the individual distributions are normal distribu-
tions, referred to as Gaussian distributions. The resultant distributions are 
combined using cluster weights.

Note that the probability of an instance x belonging to cluster A is

P

e
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( | ) ( )

( ) ( )
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4  Gennari, J. H. (1989). Focused concept formation. Proceedings of the Sixth International 
Workshop on Machine Learning. Ithaca, NY, Morgan Kaufmann, 379-382.

5  Gennari, J. H. (1990). Concept Formation: an empirical study. Doctoral dissertation, De-
partment of Information and Computer Science, University of California, Irvine.

6  Farley, C. (1999). Algorithms for model-based Gaussian hierarchical clustering. SIAM J. 
Sci. Comput. 20, 270-281.

7  Ward, J. H. (1963). Hierarchical groupings to optimize an objective function. J. Amer. Stat. 
Assoc., 62, 1159-1178.
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The likelihood of an instance given the clusters is:

P x the distribution P x cluster P clusteri ii
( | ) = � ( | ) ( ).

In model-based clustering, the data x are viewed as combing P from a 

mixture density f(x) = � k kk

G
f x( ),

=� 1
 where f

k
 is the probability density func-

tion of the observations in group k, and � k  is the probability that an obser-

vation comes from the kth mixture component � k � (0, 1) and � kk

G
=

=� 1
1

.

The following explanation of mixture methods is taken from Fraley and 
Raftery.8 The article has the following URL, http://www.jstatsoft.org/.

Each component is usually modeled by the normal or Gaussian distri-
bution. Component distributions are characterized by the mean µ

k
 and the 

covariance matrix �k,  and have the probability density function
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For univariate data, the covariance matrix reduces to a scalar variance. 
The likelihood for data consisting of n observations assuming a Gaussian 
mixture model with G multivariate mixture components is

� k i k kk

G

k

n
x� �( ; ; ,).�

== �� 11

For a fixed number of components G, the model parameters τ
k
, µ

k
, and 

�k  can be estimated using the EM algorithm initialized by hierarchical 
model-based clustering Fraley and Raftery.9 Data generated by mixtures of 
multivariate normal densities are characterized by groups or clusters cen-
tered at the means µk, with increased density for points nearer the mean. 
The corresponding surfaces of constant density are ellipsoidal. Geomet-
ric features (shape, volume, orientation) of the clusters are determined by 
the covariances �k

, that may also be parametrized to impose constraints 
across components. There are a number of possible parameterizations of 
�k

, many of which are implemented in the R package mclust.

8  Farley, C., & Raftery, A. E. (2007). Model-based methods of classification: using the mclust 
software in chemmometrics. Journal of Statistical Software, (108), 6.

9  Farley, C., & Raaftery, A. E. (1998). �How many clusters? Which Clustering method?  
-Answers via Model-based cluster Analysis� Computer Journal, 41, 578-588.
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Mixture likelihood itself or its value at given points enables density 
estimation. Fitted likelihood is useful for estimating and comparing data 
trends. Assume we know there are k clusters. Then to learn the clusters, 
we need to determine their parameters, or their means and standard de-
viations. Note that the likelihood of the training data, where the model is 
implemented using a neural network can be used as a performance crite-
rion, the EM algorithm finds a local maximum of the likelihood.

In fact, the cluster probabilities can be stored as the instance weights 
for the neural network model. Model-based clustering allows for overlap-
ping clusters. These model-based clusterings are referred to as generative 
models.

Assume we have generated a set of points for a Gaussian distribu-
tion. Then each cluster has been generated a Gaussian probability density 
function with a specified mean µ and specified variance �2. The probabil-
ity that a point x

i
 belongs, or was generated by the model, to cluster X is 

P( | ) .
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2
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 The likelihood that the cluster X is generated by 

the model is:
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The distance between two clusters C
i
 and C

j
 then becomes:
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11.5 ESTIMATE THE NUMBER OF CLUSTERS

For a set of objects partitioned into m clusters C
i
, for i = 1 to m, the 

quality can be measured by:
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m
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If we merge two clusters C
a
 and C

b
 into a cluster C

a
 � C

b
 then the 

change in quality of the overall clustering is
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The problem of determining the number of clusters is solved by choos-
ing the �best model,� or the model with maximum quality. The interested 
reader should study the following article by Farley and Raftery.10

11.6 SUMMARY

�� COBWEB limitation: assuming that probability distributions on sepa-
rate attributes are statistically independent of one another.

�� COBWEB limitation: hierarchy tree expensive to update and store the 
clusters due to the probability distribution representation of clusters.

�� COBWEB limitation: the classification tree is not height-balanced for 
skewed input data.

�� COBWEB: incremental clustering algorithm, based upon probabilistic 
categorization trees.

�� COBWEB: search for a good clustering is guided by a quality measure 
for partitions of data.

�� COBWEB: only supports nominal attributes.

�� CLASSIT: modification of COBWEB that works with nominal and 
numerical attributes.

�� Finite Mixtures Models: allow overlapping clusters.

�� Finite Mixtures Models: can be implemented as neural networks.

�� COBWEB: is a probabilistic hierarchical clustering method:

1. Use probabilistic models to measure distances between clusters.

2. Assumption: adopt common distribution functions such as Gaussian 
or Bernoulli.

10  Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? 
 Answers via model-based cluster analysis. The Computer Journal, Vol. 41, No. 8.
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�� Gaussian Mixture Models: are generative models, which regard the set 
of data objects to be clustered as a sample of the underlying data gen-
eration mechanism to be analyzed.

11.7 EXERCISES

1. Develop an algorithm for construction of a probabilistic agglomerative 
hierarchical clustering.

2. Explain how clusters are formed for a probabilistic hierarchical 
 clustering?

3. Discuss the advantages and disadvantages to the application of probabi-
listic hierarchical clustering.

4. What are the limitations of COBWEB?

5. Explain how COBWEB determines intra-class similarity.

6. Explain how COBWEB determines inter-class similarity.

7. Develop the COBWEB algorithm.

8. Discuss the limitations to COBWEB.

9. Discuss the limitations to CLASSIT.
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GENERAL ISSUES

12.1 INTRODUCTION

Many issues are present in a cluster analysis study. Do the clusters in 
a resultant clustering accurately represent the data set? What is the �cor-
rect� number of clusters? Because the foundation of clustering includes the 
similarity or dissimilarity measure chosen, the investigator has to ask if the 
�correct� measure has been chosen.

Once these issues have been resolved, there are still several more issues 
to consider. Remembering the old GIGO phrase, garbage-in-garbage-out, 
leads to investigating and validating the input data set. Outliers may need 

In This Chapter
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12.3 Which Proximity Measure Should Be Used?

12.4 Identifying and Correcting Outliers

12.5 Further Study Recommendations

12.6 Introduction to Neural Networks

12.7 Interpretation of the Results

12.8 Clustering �Correctness�?

12.9 Topical Research Exercises
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to be identified and either corrected or possibly eliminated from the study. 
Finally, it is the matter of interpretation, for the intra-cluster and the inter-
cluster meanings.

12.2 DATA CLEANSING

First the investigator needs to cleanse the data. Inclusion of unrelated 
attributes in a cluster analysis will negatively impact the proximity com-
putations. These suspicious computations will then negatively hinder the 
clustering results, because the foundation for the neighborhoods used to 
capture the clusters is the proximity function. In summary, attribute selec-
tion is a major step to make for data preparation. Inappropriate attributes 
should be identified and eliminated. If the cluster analysis will include 
categorical data, then, for the sake of preserving linear independence, a 
minimal set of  categorical attributes should be chosen. Also in the field,  
a common practice is to assign different weights to attributes or standard-
izing the attribute values to generate desirable cluster shapes. Assignment 
of attribute weighting can allow for placing varying degrees of importance 
on the attributes. In many applications, maintaining the varying degrees of 
attribute importance is critical. Consider the problem of capturing the sales 
strategies employed by the sales force for a large chain of hardware stores. 
Selling some product lines will have a greater impact on year-to-year profits 
than other product lines.

A particular method may only work on specific data types. The meth-
od in Chapters 1 through 4 are strictly numerical clustering methods and 
Chapter 8 deals exclusively with categorical data sets. The given data set 
and the required solution type for the application may necessitate convert-
ing some of the attribute data types into an appropriate type for the chosen 
method. In fact, when employing a fuzzy method, the attribute values will 
need to be transformed into a tuple format which includes the attribute 
value plus the associated weight.

In general, data quality is a concept represented by various intrinsic 
understanding or data quality dimensions, based upon viewpoint.  Wandand 
and Wang1 reported, utilizing a background review, that the top 5 data 
quality dimensions include: accuracy, reliability, timeliness, relevance, and 
completeness. Data cleansing is an activity used to achieve data quality. 

1  Wandand, Y., & Wang, R. (November, 1996). Anchoring data quality dimensions ontologi-
cal foundations. Communications of the ACM, 39(11).
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The major activities in data cleansing are analyzing data fields, removing 
erroneous data, filling in missing information, and enforcing business rules. 
Data cleansing is a continuous ongoing process. Initial validated data can 
become invalid over time. Dirty data can seriously corrupt a statistical or 
cluster analysis. The foundation for implementing a sound data cleansing 
is to possess understanding of the full complement of codes in the data set.

The following steps can be undertaken to achieve data quality:

1. Define the need.

2. Define the domains and application system rules.

3. Determine the current state of the data set.

4. Analyze the data set problems.

5. Count the cost and fixing.

For defining the need, several methods can be used to acquire accurate 
information requirements. First, asking a controlled set of questions of the 
users or consumers. This is a standard method of system analysis. Second, 
the original data set can be replaced in implementation. Another organiza-
tions data set or data sets from research or industrial studies could be used 
as the replacement. Third, a review of how the consumers of the infor-
mation will use the data and design, from the proposed approach for the 
cluster analysis, should be undertaken. Finally, a prototype study should be 
conducted in order to allow the consumers and investigators to move from 
the abstract requirements into concrete examples.

When analyzing the data set problems, a review of the existing domain 
values and business rule enforcement will be required to ensure continued 
cleansed data. Methods to correct the original problems should be pro-
posed to fix the original problem. Additionally, methods to fix existing prob-
lems should also be proposed.

Once the costs have been assessed and justified against the need for 
clean data, fixing data source problems can commence. When these tasks 
are completed, fixing the existing problems can be accomplished.

Data cleansing is more than a method for converting dirty data into 
clean data. It is a process to understand:

1. What must be done.

2. What impacts it will have in terms of cost, usability, and derived benefits.
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Ongoing review of data collection and extraction policies, data entry 
training and programmatic assessment of the critical data items will help 
keep data from becoming the target of required cleansing.

12.3 WHICH PROXIMITY MEASURE SHOULD BE USED?

The method used often determines the choice of the proximity mea-
sure. K-means normally uses the sum of the squares of distances between 
points and centroids. Hierarchical clustering methods use different dis-
tances and similarity measures. However, for numeric data, the usual L

p
 is 

commonly applied where:
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in which p corresponds to a more robust estimation, 1 � � �p . If p = 2, 
then we are using 2-dimensional Euclidean distance, often used with K-
means. When p = 1, we are using the Manhattan distance. Many clustering 
studies have data points scaled to return a unit norm, in this case the prox-
imity measure is an angle between the data points:

d x y x y
x

y
T( , ) .=













arcoss 

There are numerous similarity measures for categorical data. The Rand 
and Jaccard indices, R and J, are often used for categorical data for measur-
ing similarity. The Jaccard index treats positive and negative values sym-
metrically. Because of the symmetric treatment of positive and negative 
values, the Jaccard index is usually the index of choice with transactional 
data sets.

12.4 IDENTIFYING AND CORRECTING OUTLIERS

Clustering methods do not distinguish between �normal� data points 
and outliers, or �abnormal� data points. One method for handling outli-
ers is to rely on input thresholds to eliminate low-membership clusters. 
 Assume that in Figure 12.1 the clusters illustrated meet the threshold 
specification.
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C1

C2

C3

FIGURE 12.1 Identification 
of Clusters to Delete.

Care must be taken because outliers are identified by their local neigh-
borhoods in some methods, especially those methods using distance-based 
outlier detection.

outlier

outlier

FIGURE 12.2 Distance-based 
Outliers are Identified by their 
Local Neighbors.

Because distance-based outlier detection methods are sensitive to the 
mean and standard deviation then clustering results can be highly suspect. 
Figure 12.3 illustrates such a case:

FIGURE 12.3 The Mean of 
the Data Set is the Outlier.

Also the need for density-based metrics becomes evident when you 
study Figure 12.4. For x to be an outlier for cluster C1 then all points in 
cluster C2 have to be declared as outliers.
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X

C1

C2

FIGURE 12.4 The Need for  Density- 
based Outliers.

The solution to these problems is to define local outliers. The problem 
is that different subsets of data have different densities and could even be 
defined for different distributions. Points lying closer to a dense cluster can 
have a higher probability of being identified as an outlier than points that 
are a further distant from a sparse cluster. The LOF, local outlier factor, 
resolves this problem. An LOF specifies the degree of outlier tendency for 
a data point in terms of the distance to the k-nearest neighbor.

12.5 FURTHER STUDY RECOMMENDATIONS

Pattern recognition and image processing are major applications that em-
ploy cluster analysis. Many of the concepts and methods from these applica-
tions would clearly have potential for clustering in today�s multimedia environ-
ment. The interested reader should find out what is meant by pixel validity 
and how it is assessed. Also investigate clustering methods by visualization 
techniques. These types of clustering methods are applicable to: images, mi-
cro-array data from Bio-informatics, and geographical data. The reader should 
look into clustering for image retrieval and related usage of relevant feedback. 
Find out what the general approach is to clustering in these applications.

Neural nets have a vast impact on clustering. Find out how these clus-
tering methods differ from the methods presented in the text. Try to de-
termine what are the advantages and disadvantages for using a neural net 
approach?

12.6 INTRODUCTION TO NEURAL NETWORKS

Perceptrons are the simplest of all neural network architecture and can 
serve as a first platform for developing an understanding of neural  networks. 
A perceptron network consists of an input layer of nodes fully connected to 
an output layer of nodes as illustrated in Figure 12.5.
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FIGURE 12.5 Two-feature Two-layer Perceptron.

The number of nodes in the output layer corresponds to the number 
of classes. The number of nodes in the input layer is represented by the 
number of input features.

Weights are assigned to each connection between the input and output 
layers as in Figure 12.6. Let x

i
 represent the ith input to the ith input node 

and w
ij
 is the jth weight associated with the ith input. Then net

i
 is the ith net 

input to the perceptron as illustrated in Figure 12.6.

Net(1)

1

Net(2)

2

1

2

W(11)

W(22)

W(21)

W(12)

Y(1)

Y(2)

FIGURE 12.6 Weight Assignments for the Perceptron in Figure 12.5.

net x wi i ijj
=

=� 1

2

An activation function is applied to the inputs, usually the sigmoid 
 function:

Y
ei neti

=
� −

1

1
.

Once the perceptron has been constructed, then it has to be trained. 
Activating inputs enables the comparison of the output to the desired, or 
target, output. Let Y

i
 be the ith output and �Yi  be the ith target output. 
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Then the weights can be updated by the differences in the output and tar-
get outputs, or

w k Y Y xi i i i( ) ( )� � ′−1 α

where k is the iteration number and α is the learning rate. This iterative 
process, like the Kelley-Salisbury Method for regression discussed in Chap-
ter 5, is repeated until there is no significant change between the output 
vector and the target output vector or a maximum number of iterations has 
been reached.

Consider training a two-input/one-output perceptron to obtain an out-
put of �1.

1

1

2

FIGURE 12.7 Two-Input/One-Output Perceptron.

Begin the training by randomly assigning weights. Note that

w k w k w ki i i( ) ( ) ( )+ = � �1

and

� � ��w k Y Y x ki i i i( ) ( ) ( )

where k is the iteration number.

For example, suppose that Y′ = 1, Y = 0, w
1
= 0.5, w

2
 = 0.3, x

1
 = 2, x

2
 = 1,  

α = 1

then, on the next iteration:

w
1
(k + 1) = 0.5 + (0 � 1)(2) = �1.5

w
2
(k + 1) = 0.3 + (0 � 1)(2) = �0.7.

If we input the new weights, then the perceptron will output 0 instead.

net
k + 1

 = w
1
(k + 1)x

1
 + w

1
(k + 1)x

1

   net
k + 1

 = (�1.5) ∗ 2 + (�0.7) ∗ 1 = �3.7
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� �
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1
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3 7e ( . )
.  which implies y′ = 0.

Therefore, the iteration process must continue at this point.

Neural networks are literally used for making classifications. Addition 
of the learning rate will speed up the learning process. In fact, neural net-
works extend the classification problems that can be solved by the tradi-
tional methods discussed in this textbook.

For example, consider building a perceptron for an exclusive or opera-
tion. The inputs and outputs for this operation are:

Inputs Outputs

(0,0) 0

(0,1) 1

(1,0) 1

(1,1) 0

TABLE 12.1 Exclusive or Truth Table.

First, consider the fact that if a linear discriminant function exists that 
can separate the classes without error, then it can be shown that the training 
procedure for the associated discriminant is guaranteed to find that line or 
plane. However, such a discriminant function does not exist for the exclu-
sive or operation, this problem is not linearly separable. Neural network 
architectural design resolves the linearly nonseparable problem by utilizing 
a multilayered architecture.

Rumelhard, McClelland, and the PDP Group2 proposed a back- 
propagation network for resolving classification in nonlinear separable 
data. This model consists of a minimum of three layers: an input layer, 
one or more hidden layers, and an output layer. Nodes are fully connected 
between layers and use the sigmoid activation function. Training uses the 
 gradient descent method to minimize the sum of the squared error.

Output is obtained through using the feed-forward approach. The in-
puts for each layer, except for the input layer, are found using the previously 

2  Rumelhart, D. E., McClelland, J. L., & the PDP Group. (1986). Learning internal rep-
resentation by error propagation. Parallel Distributed Processing Models Explorations in 
Microstructure of Cognitron, vol II. Cambridge, MA: MIT Press.
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discussed weighted-sum method. Components for the output vector are 
found by the previously stated sigmoid activation function. The change in 
weights is obtained using a generalization of the delta learning rule. For 
this network, the error at the output layer is propagated back through the 
network to compute the change in weights. Figure 12.11 illustrates a back-
propagation neural network.

Input Layer

Hidden Layer

Output Layer

FIGURE 12.8 Two Feature, Three Class Back-Propagation Neural Network.

The objective is to minimize the error:

Error = ���( / ) ( ) .1 2 2Y Yi ii

The direction on the error surface which most rapidly reduces the error 
needs to be derived, or we must find the slope of the error function. Find-
ing the slope, by taking the derivative, is referred to as the gradient descent 
method.

� � −
�

�
=w

Error

w
f x wi

i

i i i, ( , )where Y
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and
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The sigmoid function is a good choice because the activation function 
needs to be differentiable.

Let L
1
 represent the input layer, L

2
 represent the hidden layer, and L

3
 

represent the output layer. X
��

 is the input vector, T
��

 is the target output vec-
tor, and o

i
 is the ith component of the actual output vector. Let α be the 

learning rate between L
2
 and L

3
, and � be the learning rate between L

1
  

and L
2
.

The change in weights between L
2
 and L

3
 is:

� i i i i it o o o� � �( ) ( )1

� � −w oij i j�� .

Because there is no target vector with which to compare the hidden 
layers, the following equation is used to change the weights between layers 
L

1
 and L

2
. Note that o

ij
 represents the output of component j in the hidden 

layer and o
i
 represents the ith component in the output vector.

� � − −
=�w o o o wij ij i i k ikk

m
β ( )1

1
�

After the weights are updated, the error is calculated using the follow-
ing equation:

Error � �
��

1

2
2

1
( ) .o ti ii
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This process is repeated until the error is less than some minimum-
error tolerance.

Often neural networks are viewed as �black boxes� that successfully 
classify data, but without any explanation of how the network reached the 
decisions. The extraction of fuzzy if-then rules from fuzzy neural networks 
provide potential resolution to equipping neural networks with the needed 
explanations of how the network decisions were made in a data classifica-
tion. The interested reader should study Ishibuchi, Nii, and Turksen.3

Example 12.1

Consider the problem of estimating the cost of a house based upon 
the price of comparable houses. Input data would include: location, square 
footage, number of bedrooms, lot size in acreage, number of bathrooms, 
etc. One output is desired, the sales price. Training data includes features 
of recently sold houses and the related sales prices.

Input data consists of discrete data (number of bedrooms, number of 
bathrooms), categorical data (location), and continuous data (square foot-
age, lot size in acreage). Typical input to output is illustrated in Figure 12.12.

condition excellent

central heating/AC

garage triple

bedrooms 4

bathrooms 4½
$425,000

Location 4

5½ acres

3800 sq ft

8

7

6

5

4

3

2

1

FIGURE 12.9 Intuitive Neural Network Design.

3  Ishibuchi, H., Nii, M., & Turksen, J. B. (1998). Bidirectional Bridge between Neural Net-
works and Linguistic Knowledge: Linguistic Rule Extraction and Learning from Linguistic 
Rules. Proceedings of the IEEE Conference on Fuzzy Systems FUZZ.IEEE ’98, Anchorage, 
AK., 1112-1117.
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After training, the neural network can be validated by using a set of 
sales examples never seen before by the network. This can also be accom-
plished by dividing the accessible data before training into a training set and 
a validation set.

Example 12.2

Consider the iris plant classification problem and data set available 
from the University of California at Irvine Machine Learning Laboratory. 
The input data set consists of four variables (sepal length, sepal width, petal 
length, and pedal width) for three classes of iris plants (setosa, versicolor, 
and virginica). An intuitive neural network for this classification is illus-
trated in Figure 12.10.

Sepal Length

Versicolor

Virginca

Setosa

Petal Length

Petal Width

Sepal Width

4

3

3

2

2

1

1

FIGURE 12.10 Intuitive Neural Network for the Iris Classification.

From the 150 cases in the data set, the investigator should randomly di-
vide the cases into a training and a validating set. This network is trained to 
divide input vectors into three classes [(1,0,0), (0,1,0), and (0,0,1)]. This is a 
competitive neural network and does not possess the ability to compute the 
sum of squared errors criterion because the desired outputs are unknown. 
Therefore, simply stop when no noticeable changes occur in the weight 
vectors, which is a sign that the network has converged. Clearly neural net-
works enable one to identify clusters in input data. In fact, a competitive 
neural network can classify input patterns that are not linearly separable. 
The method for a competitive neural network learning an instance of an 
input is divided into four steps:
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 Step 1: Determine the output for the new input instance.

 Step 2: Determine the difference between the output and the target 
output for each output node. These differences are linear error, there-
fore they are proportional to partial derivatives and then we can process 
the gradient descent.

 Step 3: Determine, for all input and hidden nodes, w
k
 ∗ error

k
, where 

error
k
 is the difference found in Step 2 and w

k
 is the weight of edge that 

connects to the output node. This step propagates the error backwards, 
and explains why the learning method is called back-propagation.

 Step 4: The gradient descent is performed using the formula:

w w r error a x oij ij j j j i� � �� � � ,

 Where r is the learning rate, error
j
 is the difference between the output 

and target output for output node j, and x
j
, as well as o

j
, are determined 

as in Step 1. a
j
 is the partial derivative of output node j�s activation func-

tion. The method terminates when the training instances have been run, 
at this point learning is complete.

The human brain maintains centers for speech, vision, hearing, and 
motor functions. These centers are located in areas next to each other. 
 Kohonen4 developed neural networks where ordered feature maps develop 
naturally. Output units in the neural network located physically next to each 
other are made to respond to classes of input vectors that are also next to 
each other. Kohonen neural networks are extensions of competitive learn-
ing networks where input units are ordered, often in a two-dimensional 
grid. The ordering allows the user to determine which output nodes are 
neighbors. This topology-preserving map is referred to as a self-organizing 
map, SOM. As input is submitted to the SOM network the following learn-
ing rule applies to the winning output node i:

f f f f
w t w t g k x t w t S0 0 0 0( ) ( ) ( , )( ( ) ( )), .+ = � � �1 0 for every 

Where t is time, 
f
x t( ) is an input vector presented to the network, S is the set 

of output nodes, and g(0,k) is a decreasing function of the grid-distance be-
tween nodes 0 and k where g(k,k). g(0,k) = e�(�(0�k)2) if g(0,k) is the  Gaussian 
function.

4  Kohonen, T. (1988). Self-Organizing and Associative Memory, 3rd ed. Springer Verlag,  
New York.
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During each training period, each unit with a positive activity with-
in the neighborhood of the winning output node participates in the 
learning process. The interested reader should consult http://wwww.cs. 
hmc.edu/~kpang/nn/som.html and http://www.rocksolidimagess.com/pdf/ 
Kohonen.pdf.

12.7 INTERPRETATION OF THE RESULTS

Attribute selection and each tuple�s feature or attribute values will im-
pact the interpretation of the resultant clustering. Therefore, the results 
of the cluster analysis need to be validated or at least evaluated. A panel of 
experts in the domain application and in cluster analysis could assess the 
face validity of the resultant clustering. Kandogan5 discusses cluster visual-
ization which can be used as an alternative for cluster validation. One of the 
main observations formed after reviewing research studies and journal ar-
ticles on clustering is that the interpretability depends on the method. For 
instance, K-means generates clusters that are dense neighborhoods with 
the centroids as the cluster centers. Kandogan1 uses cluster visualization to 
validate.

The Rand statistic, or the Jaccard statistic, which allows for comparison 
of two distinct clusterings, can be used for validation, especially in Monte 
Carlo studies. Other validation methods are based on conditional entropy 
by Cover and Thomas6 and using the F-measure by Larsen and Aone.7

12.8 CLUSTERING “CORRECTNESS”?

Consider the following graphs for the same data set in Figure 12.11.

Sometimes more than one clustering is representative of the data set.

Not only is the question concerning the number of clusters important 
but another major question is whether or not distinct clusters are equally 
representative of the data set, especially where densities vary.

5  Kandogan, E. (2001). Visualizing multi-dimensional clusters, trends, and outliers using star 
coordinates, In Proceedings of the 7th ACM SIGKDD, San Francisco, CA, 299-304.

6  Cover, T. M., and Thomas, J. A. (1999). Elements of Information Theory, John Wiley & 
Sons, New York, N. Y.

7  Larsen, B. and Aone, C. (1999). Fast and efficient text mining using linear-time document 
clustering, In Proceedings of the 5th ACM SIGKDD, San Diego, CA, 16-22.
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During a clustering study, multiple runs using a specific method gener-
ates a sequence of clustering results. Successive runs produce clusters that 
tend to contain clusters closer together. Many times these results are due to 
the method�s underlying function. The objective function for the K-means 
method is a monotone decreasing function and, therefore, magnifies the 
sequence of clustering results. Which cluster does x in Figure 12.13 best 
qualify for membership?

Data set before clustering Three cluster solution

Four cluster solution

FIGURE 12.11 Two Potentially Correct Clusterings.

FIGURE 12.12 Clusters with Unequal 
Densities.
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X

FIGURE 12.13 Which Membership for 
Data Point x?

Because the K-means method is based upon ANOVA, Milligan and 
Cooper8 used the F statistic to find an optimal number of clusters in a data 
set. Another useful observation is that a choice for establishing a clustering 
coefficient would be the distance between two centroids normalized by the 
corresponding cluster�s radii, which measures cluster spread, and averaged 
by cluster weights. Kaufman and Rousseeuw9 define a Silhouette coeffi-
cient which finds the average distance to the best fitting cluster compared 
to the average distance between a data point x ∈ C and other points of C 
for determining cluster system appropriateness. Cohesion measures how 
closely related objects are in a cluster, while separation measures how dis-
tinct or well-separated a cluster is from other clusters.

Definition: Cohesion a(x): average distance of x to all other vectors in 
the same cluster.

Definition: Separation b(x): average distance of x to the vectors in other 
clusters.

To find the minimum among the clusters:

Definition: Silhouette s(x):

s x
b x a x

a x b x
( )

( ) ( )

max{ ( ), ( )}
=

�

A value of +1 indicates a perfect clustering choice and a value below 0 
indicates a bad clustering choice.

 8  Milligan, G., & Cooper, M. (1985). An examination of procedures for determining the 
number of clusters in a data set. Psychometrika, 50, 159-179.

 9  Kaufman, L., & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster 
Analysis. New York: John Wiley and Sons.
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Definition: Silhouette coefficient (SC):

SC
N

s x
i

N

=
=
�

1

1

( ).

Bezdek10 addresses the concept of separation using fuzzy assignments. 
For a particular cluster C, different weights w(x,C) are used to define C(x) =  
minarg

C
 w(x,C). Then a partition coefficient is defined to equal the sum of 

squares of the weights:

W
N

C X
x X

=
��

1 2( ( )) .

The best choice for k, the number of clusters, can be determined by 
plotting for each of the measures, discussed above, as a function of k.

12.9 TOPICAL RESEARCH EXERCISES

The following exercises are for the reader to perform topical back-
ground searches. You are to review the most cited topics in each problem 
area, identify and illustrate the application of the techniques or methods in 
the problem area, and explain the motivation for their development. Per-
form a topical background search on one or more of the following:

 1. Cluster tendency rather than cluster validation.

 2. Subspace outliers.

 3. MINDS, the Minnesota Intrusion Detection System.

 4. Sequence outliers.

 5. Outliers for streaming data.

 6. The �Kernel Trick� in Hilbert space.

 7. Clustering in nonlinearly separable space.

 8. Neural nets and clustering.

 9. Projected clustering.

10. Apriory for mining frequent sets.

10  Bezdek, D. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. New 
York: Plenum Press.
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acuity, 285
agglomerative hierarchical clustering

centroid clustering method, 44, 49
vs. divisive clustering, 35
farthest neighbor method, 44, 47
group average method, 44
median clustering method, 44, 48
nearest neighbor method, 44, 46
procedure, 27�29

algorithm
apriori, 168
categorical data clustering

CACTUS method, 241�246
CLICK method, 246�254
description, 229�231
ROCK method, 231�236
STIRR method, 236�241

COBWEB, 276�284
complete-link vs. single-link clustering, 39�42
Corrected Rand Statistic, 71�72
data mining, 24�25
DBSCAN, 267�270
fuzzy clustering, 118
information gain, 155�159
k-means approach, 68

Forgy�s method, 69
Jancey�s method, 69�71
MacQueen�s method, 68�69
pair of points, 72

linear time, 267
weight update, 240

apriori algorithm, 168
association rules

apriori algorithm, 168
definition, 167
downward item set closure theorem, 

168�169
extraction, 170
frequent item set, 167
transaction database, 166
types, 167

asymmetric matrices, 10

B
back-propogation neural networks, 299�300
Balanced Iterative Reducing and Clustering 

using Hierarchies (BIRCH)
cluster feature tree, 74
cluster feature vectors, 74
phases of algorithms, 75�76
procedures, 73�74
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Bayesian classification, 161�165
bell membership function, 139
BIRCH. See Balanced Iterative Reducing and 

Clustering using Hierarchies
border point, 268

C
CACTUS. See Clustering Categorical Data 

Using Summaries
capturing clusters

Chebychev distance, 7
city-block distance, 6
Minkowski measure, 6
neighborhood, 5�6
percent disagreement, 7
power distance, 7
proximity measure, 5
�sup� distance, 6

categorical data clustering algorithms
CACTUS method, 241�246
CLICK method, 246�254
description, 229�231
ROCK method, 231�236
STIRR method, 236�241

category utility function, 277�279
CDF. See cumulative distribution function
centroid clustering method, 44, 49
Chebychev distance, 7
city-block distance, 6
classification

algorithm of decision tree, 152
Bayesian, 161�165
decision rules and trees, 151
decision tree, 150�151
definition, 148
description, 147�148
ID3 tree construction algorithm

basic steps, 152�153
choosing best feature, 154
information gain algorithm, 155�159
pruning, 159�160
questions, 153�154

model construction, 149
model evaluation, 149�150
supervised, 148
unsupervised, 148

CLICK. See CLIque Clustering using  
K-partite graphs

CLIque Clustering using K-partite graphs 
(CLICK), 246�254

closed neighborhood, 6
cluster analysis

vs. Delphi technique, 2
dendrogram, 12�13
description, 1�4
Judgmental ANalysis, 2
need for, 3�4
visualizations, 9�10

cluster feature tree, 74
cluster feature vectors, 74
Clustering Categorical Data Using Summaries 

(CACTUS), 241�246
COBWEB algorithm, 276�284
cohesion, 307
combiner function, 240�241
common neighbors, 234�235
competitive neural network, 303�305
complete graph, 246
complete-link clustering

dendrogram, 30
graphical algorithms, 39�42
iterations, 32
matrix computations, 31
one cluster solutions, 33�34

complete-link clustering process, 12
composition method, 200�201
concept hierarchy

fifth instance of traffic sign, 283
first instance of traffic sign, 277
fourth instance of traffic sign, 282
second instance of traffic sign, 280
sixth instance of traffic sign, 284
third instance of traffic sign, 281

convolution method, 201�202
cophenetic correlation coefficient, 214
cophenetic proximity matrix, 213
cophenetic proximity measure, 213
core point, 268
Corrected Rand Statistic algorithm, 71�72
CRISP-DM. See Cross-Industry Standard 

Process for Data Mining
crisp logic, 117
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crisp partitioning, 127
critical normal deviate, 184
Cross-Industry Standard Process for Data 

Mining (CRISP-DM), 20�22
cumulative distribution function (CDF), 

197�198

D
data cleansing, 258�259, 292�294
data cubes, 23
data mining

algorithms, 24�25
data warehousing, 22�23
description, 18�19
exploratory data analysis, 23�24
Knowledge Discovery in Databases, 19�22
modeling for, 25
process, 22
visualizations, 23�24

data warehousing, 22�23
DBSCAN. See Density-Based Spatial 

 Clustering of Applications with Noise
decision-making process, Delphi technique, 2
decision tree, 150�151

algorithm, 152
decision rules and, 151

Delphi technique, 2
dendrogram

complete-link clustering, 30
definition, 12�13
proximity, 42
single-link clustering, 30�31
threshold, 42

density-based outliers, 296
Density-Based Spatial Clustering of Applica-

tions with Noise (DBSCAN), 267�270
density-connected, 269
density-reachable, 268
directly density-reachable, 268
distance-based outlier algorithms, 259
distance-based outlier detection method, 295
divisive clustering

vs. agglomerative clustering, 35
procedure, 29

downward item set closure theorem, 168�169
dynamic programming, 236�238

E
Euclidean distance function, 259
Euclidean distance matrix, 60
Euclidean space, labeled points, 119
Euclidian neighborhoods, 8�9
exploratory data analysis, 23�24
external indices, 179
external validity index, 213

F
Farley and Raftery Gaussian mixture model, 

286�288
farthest neighbor method, 44, 47
feed-forward approach, 299
Fibonacci sequence, 194�195
fitted likelihood, 288
Forgy�s partition clustering method, 69
frequency test, 202�204
frequent item set, 167
full period generator, 194
fuzzy clustering

algorithm, 118
fuzzy c-means, 129�137
induced fuzziness, 137�141
initial configuration, 123�124
membership function, 121�123
merging of clusters, 124�127
outliers, 270�271
partitioning, 127�129

fuzzy logic, 116�117
fuzzy neighborhoods, 119

labeled points, 120
fuzzy partitioning, 127�129
fuzzy set, 117

G
gap test, 204�206
Gaussian membership function, 139�140
Gaussian mixture model, 286�288
Gaussian probability density function, 288
generative models. See model-based  

clustering
goodness measure, 235
gradient descent method, 300�301
group average method, 44
grouping criteria, partition clustering, 73
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H
hard clusterings, 117
hierarchical clustering

agglomerative vs. divisive, 27�29, 35
complete-link clustering

dendrogram, 30
graphical algorithms, 39�42
iterations, 32
matrix computations, 31
one cluster solutions, 33�34

single-link clustering
dendrogram, 30�31
graphical algorithms, 39�42
iterations, 32
matrix computations, 32
one cluster solutions, 33
proximity dendrogram, 42
threshold dendrogram, 42

Ward�s method, 35�39
hierarchical grouping, 28
Hubert�s Γ statistic, 212
hybrid clustring method. See Balanced 

 Iterative Reducing and Clustering 
 using Hierarchies (BIRCH)

hypothesis testing, 180�191

I
ID3 tree construction algorithm

basic steps, 152�153
choosing best feature, 154
information gain algorithm, 155�159
pruning, 159�160
questions, 153�154

induced fuzziness, 137�141
information gain algorithm, 155�159
intercorrelation matrix, 86
internal indices, 179
internal validity index, 213
ipsative JAN, 83
iterative partition clustering method, 59�61

J
Jaccard index, 294
JAN. See Judgmental ANalysis
Jancey�s partition clustering method, 69�71

JPC. See judgmental policy capturing
Judgmental ANalysis (JAN), 2

alternative method, 89�91
case study

checking the model, 106�108
criterion variables, 97�98
extracting equation, 108�111
judges, 103
organizing data method, 98�103
predictor variables, 96�97
purpose, 94�96
questions asked, 98
statement of problem, 93�94
strategy procedures, 103�106

description, 82�83
grouping procedure, 84�85
intercorrelation matrix

capturing, 85�88
definition, 86
grouping to optimize, 88�89

ipsative, 83
judgmental evaluation procedure, 84
Kelley-Salisbury technique, 85�88
normative, 84
profile score, 84
in research, 91�93
type A, 84
type B, 84

judgmental evaluation procedure, 84
judgmental policy capturing (JPC), 90�91

K
KDD. See Knowledge Discovery in Databases
Kelley-Salisbury technique, 85�88
k-means algorithm

Forgy�s method, 69
Jancey�s method, 69�71
MacQueen�s method, 68�69
pair of points, 72

Knowledge Discovery in Databases (KDD), 
19�22

Kolmogorov goodness-of-fit test, 211
Kolmogorov-Smirnov two-sample test,  

211�212
K-partite graph, 247
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L
labeled points fuzzy neighborhoods, 120
Laplace density function, 200�201
LCGs. See linear congruential generators
linear congruential generators (LCGs)

definition, 193�194
multiplicative, 194

linear time algorithm, 267
local outlier factor (LOF), 260, 296
LOF. See local outlier factor
lower-tail test, 187�189

M
MacQueen�s partition clustering method, 

68�69
Mamdani model, fuzzy systems, 117
Manhattan distance, 6
maximal complete subgraphs, 252�253
MCD. See minimum covariance determinant
mean method, 44
median clustering method, 44, 48
membership function

bell, 139
fuzzy clustering, 121�123
Gaussian, 139�140
sigmoidal curve, 140
trapezoidal, 138�139, 141
triangular, 138�139, 141

minimum covariance determinant (MCD), 
264

Minkowski measure, 6
mixture likelihood, 288
mixture model-based clustering, 284�286
model-based clustering

COBWEB algorithm, 276�284
estimation of clusters, 288�289
Farley and Raftery Gaussian mixture 

model, 286�288
mixture, 284�286
objective of, 275

modeling, data mining, 25
modulus, 193

primitive root, 194
Monte Carlo analysis

composition method, 200�201

convolution method, 201�202
cumulative distribution function, 197�198
description, 179
Fibonacci sequence, 194�195
frequency test, 202�204
full period generator, 194
gap test, 204�206
Hubert�s Γ statistic, 212
Kolmogorov goodness-of-fit test, 211
Kolmogorov-Smirnov two-sample test, 

211�212
linear congruential generators, 193�194
modulus, 193
multiplier, 193
poker test, 207�208
pseudorandom numbers, 193
random number generation, 192
random variate generation, 192
rejection technique, 198�200
runs above and below central value test, 

210
runs test, 208�209
runs up and down test, 210�211

multidimensional database, 23
multiplicative linear congruential generators, 

194
multiplier, 193

N
Naïve Bayesian Classifier (NBC), 162�165
NBC. See Naïve Bayesian Classifier
nearest neighbor method, 44, 46
neighborhood, 5

closed, 6
Euclidian, 8�9
fuzzy, 119
non-fuzzy, 118

neural networks
back-propogation, 299�300
competitive, 303�305
feed-forward approach, 299
gradient descent method, 300�301
perceptron

definition, 296
one-output, 298
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neural networks (Continued)
truth table, 299
two-input, 298
two-layer, 297
weight assignments, 297

self-organizing map, 304
sigmoid function, 301

noise point, 268
non-fuzzy neighborhoods, 118
normative JAN, 84
null hypothesis, 180

O
objective function, 28
one-output perceptron, 298
one-tail probability, 186�187
operating characteristic curve, 190
outliers

clustering-based approaches, 265�270
correcting, 294�296
definition, 259
distance-based algorithms, 259
fuzzy clustering-based approach, 270�271
identifying, 294�296
local outlier factor method, 260, 296
statistical apporoaches, 261�265
types of, 261

P
partition clustering

BIRCH
cluster feature tree, 74
cluster feature vectors, 74
phases of algorithms, 75�76
procedures, 73�74

grouping criteria, 73
initial partition, 62�65
iterative method, 59�61
k-means algorithm

Forgy�s method, 69
Jancey�s method, 69�71
MacQueen�s method, 68�69
pair of points, 72

search for poor fits, 65�68
partition coefficient, 308
percent disagreement, 7

perceptron
definition, 296
one-output, 298
truth table, 299
two-input, 298
two-layer, 297
weight assignments, 297

poker test, 207�208
power curve, 190�191
power distance, 7
primitive root of modulus, 194
Principles of Numerical Taxonomy  

(Sokal and Sneath), 3
product-moment correlation  

coefficient, 214
profile score, 84
proximity dendrogram, 42
proximity matrix

cophenetic, 213
cophenetic proximity measure, 11
description, 10
ordinal, 10

proximity measure, 294
capturing clusters, 5
cophenetic, 11

proximity ratio matrix, 11
pruning

approaches, 169�170
ID3 tree construction algorithm,  

159�160
pseudorandom numbers, 193

R
Rand index, 294
random number generator

definition, 192
guidelines, 196
misconceptions, 196
properties, 193
techniques, 195

random variate generation, 192
region of acceptance, 184�185
rejection technique, 198�200
relative validity index, 215
RObust Clustering using linKs (ROCK), 

231�236
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ROCK. See RObust Clustering using linKs
runs test, 208�209

above and below central value, 210
up and down, 210�211

S
self-organizing map (SOM), 304
separation, 307
Sieving Through Iterated Relational 

 Reinforcement (STIRR), 236�241
combiner function, 240�241
dynamic programming, 236�238
weight-propagation method, 238�239

sigmoidal curve, membership function, 140
sigmoid function, 301
Silhouette coefficient, 308
single-link clustering

dendrogram, 30�31
graphical algorithms, 39�42
iterations, 32
matrix computations, 32
one cluster solutions, 33
proximity dendrogram, 42
threshold dendrogram, 42

SOM. See self-organizing map
statistical outlier apporoach, 261�265
statistical testing

critical normal deviate, 184
critical value, 184
elements, 187
lower-tail/two-tail, 187�189
one-tail probability, 186�187
operating characteristic curve, 190
power curve, 190�191
region of acceptance, 184�185
region of rejection, 184�185
sampling distribution, 182�183
significance level, 184
upper-tail test, 184

STIRR. See Sieving Through Iterated 
 Relational Reinforcement

subgraph, 246
subsequence, 237
Sugeno model, fuzzy systems, 117
�sup� distance, 6
supervised classification, 148

T
threshold dendrogram, 42
topical background search, 308
transaction database, 166
trapezoidal membership function, 138�139, 141
tree pruning. See pruning
triangular membership function, 138�139, 141
two-dimensional Euclidean space, 7�9
two-input perceptron, 298
two-layer perceptron, 297
two-tail test, 187�189
type A JAN, 84
type B JAN, 84

U
unsupervised classification, 148
upper-tail test, 184

V
value-reflecting number. See objective 

 function
visualizations

cluster analysis, 9�10
and exploratory data analysis, 23�24

W
Ward�s method, 35�39
weight-propagation method, 238�239
weight update algorithm, 240
WEKA, machine learning algorithm, 24
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